• High Power Laser and Particle Beams
  • Vol. 37, Issue 2, 021001 (2025)
Yingtong Shi1, Hang Xu1,*, Jinqiang Xu2, and Senlin Huang1
Author Affiliations
  • 1State Key Laboratory of Nuclear Physics and Technology & Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
  • 2Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.11884/HPLPB202537.240261 Cite this Article
    Yingtong Shi, Hang Xu, Jinqiang Xu, Senlin Huang. Research progress on high-brightness electron source drive laser system[J]. High Power Laser and Particle Beams, 2025, 37(2): 021001 Copy Citation Text show less
    References

    [1] Huang Senlin, Liu Kexin, Zhao Kui. DC-SRF photocathode gun[J]. Chinese Science Bulletin, 68, 1036-1046(2023).

    [2] Liu Zhi, Wan Weishi, Wang Dong. Development of large-scale user facilities for photon science in China[J]. Chinese Journal of Nature, 46, 161-172(2024).

    [3] Ackermann W, Asova G, Ayvazyan V et al. Operation of a free-electron laser from the extreme ultraviolet to the water window[J]. Nature Photonics, 1, 336-342(2007).

    [4] Decking W, Abeghyan S, Abramian P et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator[J]. Nature Photonics, 14, 391-397(2020).

    [5] Cinquegrana P, Demidovich A, Kurdi G et al. The seed laser system of the FERMI free-electron laser: design, performance and near future upgrades[J]. High Power Laser Science and Engineering, 9, e61(2021).

    [6] Lee J, Ko I S, Han J H et al. Parameter optimization of PAL-XFEL injector[J]. Journal of the Korean Physical Society, 72, 1158-1165(2018).

    [7] Milne C J, Schietinger T, Aiba M et al. SwissFEL: the Swiss X-ray Free Electron Laser[J]. Applied Sciences, 7, 720(2017).

    [8] Hutton A. Energy-recovery linacs for energy-efficient particle acceleration[J]. Nature Reviews Physics, 5, 708-716(2023).

    [9] Zhao Z T, Wang Z, Feng C et al. Energy recovery linac based fully coherent light source[J]. Scientific Reports, 11, 23875(2021).

    [10] Akemoto M, Arakawa D, Asaoka S et al. Construction and commissioning of the compact energy-recovery linac at KEK[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 877, 197-219(2018).

    [11] Filippetto D, Musumeci P, Li Renkai et al. Ultrafast electron diffraction: Visualizing dynamic states of matter[J]. Reviews of Modern Physics, 94, 045004(2022).

    [12] Xie Huamu. Overview of the semiconductor photocathode research in China[J]. Micromachines, 12, 1376(2021).

    [13] Zhou Feng, Adolphsen C, Dowell D et al. Overview of CW electron guns and LCLS-II RF gun performance[J]. Frontiers in Physics, 11, 1150809(2023).

    [14] Feng Lie, Li Chunlei, Liu Bo, et al. Drive laser system f shanghai soft Xray Free Electron Laser[C]Proceedings of the 12th International Particle Accelerat Conference. 2021: 44034405.

    [15] Zhang Rui, Kumano H K, Toyotomi N, et al. Laser system f SuperKEKB RF gun in phase III commissioning[C]Proceedings of the 13th International Particle Accelerat Conference. 2022: 29142916.

    [16] Winkelmann L, Choudhuri A, GrosseWtmann U, et al. The European XFEL photocathode laser[C]Proceedings of the 39th International Free Electron Laser Conference. 2019: 423426.

    [17] Zhang Baichao, Li Xiaoshen, Liu Qi et al. High repetition-rate photoinjector laser system for S3FEL[J]. Frontiers in Physics, 11, 1181862(2023).

    [18] Zhao Zhi, Dunham B M, Bazarov I, et al. Generation of 110 W infrared power 65W green power from a 1.3GHz subpicosecond fiber amplifier[C]Proceedings of 2012 Conference on Lasers ElectroOptics. 2012: 12.

    [19] Zhao Zhi, Dunham B M, Wise F W. Generation of 167 W infrared and 124 W green power from a 1.3-GHz, 1-ps rod fiber amplifier[J]. Optics Express, 22, 25065-25070(2014).

    [20] Zhao Z, Sheehy B, Minty M. Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier[J]. Optics Express, 25, 8138-8143(2017).

    [21] Li Xiaoshen, Xu Jinqiang, Sun Darui. Drive laser system for a photocathode at IHEP[J]. High Power Laser and Particle Beams, 30, 021001(2018).

    [22] Li Xiaoping, Wang Jiuqing, Xu Jinqiang et al. Constructions and preliminary HV conditioning of a photocathode direct-current electron gun at IHEP[J]. Chinese Physics Letters, 34, 072901(2017).

    [23] Xu Hang, Xu Jinqiang, Li Xiaoping et al. High power drive laser system for photocathode at IHEP[J]. Optics Express, 29, 29550-29556(2021).

    [24] Wu Tong, Xu Hang, Xu Jinqiang. Design of the photocathode drive laser system for high current electron beam operation of DC-SRF-II gun[J]. High Power Laser and Particle Beams, 34, 104018(2022).

    [25] Jia H, Li T, Wang T, et al. High perfmance operation of a directcurrent superconducting radiofrequency combined photocathode gun[DBOL]. arXiv preprint arXiv: 2406.00659, 2024.

    [26] Wang Tianyi, Xu Hang, Liu Zhongqi et al. Advanced drive laser system for a high-brightness continuous-wave photocathode electron gun[J]. Optics Express, 32, 9699-9709(2024).

    [27] Li Chunlei, Dai Xiaolei, Deng Haixiao, et al. Photoinject drive laser tempal shaping f Shanghai Soft Xray Free Electron Laser[C]Proceedings of the 12th International Particle Accelerat Conference. 2021: 16741677.

    [28] Li Chen, Akcaalan O, Frede M, et al. Photocathode laser development f superconducting Xray ree electron lasers at DESY[C]Proceedings of the 12th International Particle Accelerat Conference. 2021: 35993601.

    [29] Gilevich S, Alverson S, Carbajo S, et al. The LCLSII photoinject drive laser system[C]Proceedings of 2020 Conference on Lasers ElectroOptics. 2020: 12.

    [30] Schietinger T, Pedrozzi M, Aiba M et al. Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility[J]. Physical Review Accelerators and Beams, 19, 100702(2016).

    [31] Li Cheng, Wang Wenxing, Li Weiwei. Drive laser shaping and transport system for photocathode RF gun[J]. High Power Laser and Particle Beams, 33, 094002(2021).

    [32] Yan Lixin, Hua Jianfei, Du Yingchao, et al. UV pulse trains by αBBO crystal stacking f the production of THzraprate electron bunches[J]. Journal of Plasma Physics, 2012, 78(S4): 429431.

    [33] Liu Fangming, Huang Senlin, Si Shangyu et al. Generation of picosecond pulses with variable temporal profiles and linear polarization by coherent pulse stacking in a birefringent crystal shaper[J]. Optics Express, 27, 1467-1478(2019).

    [34] Mohr C, Winkelmann L, Chu H, et al. Flexible pulsetrain amplitude shaping f the European XFEL photoinject laser[C]Proceedings of the 8th EPSQEoD Europhoton Conference. 2018.

    [35] Zhao Zhi, Dunham B M, Wise F W. Generation of 150 W average and 1 MW peak power picosecond pulses from a rod-type fiber master oscillator power amplifier[J]. Journal of the Optical Society of America B, 31, 33-37(2014).

    [36] Zhang R, Zhou X, Yoshida M, et al. Study on stable high output energy laser system f RFgun at SuperKEKB inject[C]Proceedings of the 14th Annual Meeting of Particle Accelerat Society of Japan. 2017: 12011204.

    [37] Jiang Shimin, Lu Zhijun, Liu Xingguang. Study of drive laser shaping system for C-band photocathode RF gun[J]. High Power Laser and Particle Beams, 36, 104003(2024).

    [38] Zhang Haiming, Wang Jian, Liu Zhengzheng, et al. Design of HUSTUED femtosecond laser delivery system[C]Proceedings of SPIE 12959, AOPC 2023: Laser Technology Applications; Optoelectronic Devices Integration. 2023: 129590A.

    [39] Yan L X, Du Yingchao, Du Qiang et al. TW Laser system for Thomson scattering X-ray light source at Tsinghua University[J]. Chinese Physics C, 33, 154(2009).

    [40] Hong J, Han J H, Park S J et al. A study on low emittance injector and undulator for PAL-XFEL[J]. High Power Laser Science and Engineering, 3, e21(2015).

    [41] Penco G, Allaria E, Badano L et al. Optimization of a high brightness photoinjector for a seeded FEL facility[J]. Journal of Instrumentation, 8, P05015(2013).

    [42] Zhou Xiangyu, Natsui T, Yoshida M, et al. Ytterbium fiber disk laser of RF gun f SuperKEKB[C]Proceedings of the 5th International Particle Accelerat Conference. 2014: 24152417.

    [43] Zhang Rui, Zhou Xiangyu, Honda Y, et al. Hybrid YbNd laser system f RF gun in SuperKEKB phase II phase III commissioning[C]Proceedings of the10th International Particle Accelerat Conference. 2019: 36633666.

    [44] Zhang Rui, Zhou Xiangyu, Kumano H, et al. YbNd hybrid laser system f RF gun in SUPERKEKB phase II[C]Proceedings of the 15th Annual Meeting of Particle Accelerat Society of Japan. 2018.

    [45] Zhang Rui, Yoshida M, Natsui T, et al. Improvements of the laser system f RFgun at SuperKEKB inject[C]Proceedings of the 6th International Particle Accelerat Conference. 2015: 15981600.

    [46] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).

    [47] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives [Invited][J]. Journal of the Optical Society of America B, 27, B63-B92(2010).

    [48] Chen Shengping, Chen Hongwei, Hou Jing et al. 100 W all fiber picosecond MOPA laser[J]. Optics Express, 17, 24008-24012(2009).

    [49] Dupriez P, Finot C, Malinowski A et al. High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs[J]. Optics Express, 14, 9611-9616(2006).

    [50] Limpert J, Deguil-Robin N, Manek-Hönninger I et al. High-power picosecond fiber amplifier based on nonlinear spectral compression[J]. Optics Letters, 30, 714-716(2005).

    [51] Honda Y. Development of a photoinject laser system f KEK ERL test accelerat[C]Proceedings of the 3rd International Particle Accelerat Conference. 2012: 15301532.

    [52] Cui Zijian, Sun Mingying, Liu De’an et al. High-peak-power picosecond deep-UV laser sources[J]. Optics Express, 30, 43354-43370(2022).

    [53] Turcicova H, Novak O, Muzik J et al. Laser induced damage threshold (LIDT) of β-barium borate (BBO) and cesium lithium borate (CLBO)-overview[J]. Optics & Laser Technology, 149, 107876(2022).

    [54] Mironov S Y, Andrianov A V, Gacheva E I et al. Spatio-temporal shaping of photocathode laser pulses for linear electron accelerators[J]. Physics-Uspekhi, 60, 1039-1050(2017).

    [55] Chung M, Qin H, Davidson R C. Generalized Kapchinskij-Vladimirskij 的的 distribution and envelope equation for high-intensity beams in a coupled transverse focusing lattice[J]. Physical Review Letters, 103, 224802(2009).

    [56] Kuzmin I, Mironov S, Gacheva E et al. Shaping triangular picosecond laser pulses for electron photoinjectors[J]. Laser Physics Letters, 16, 015001(2019).

    [57] Danailov M B, Deovich A, Ivanov R, et al. Laser systems f next generation light sources[C]Proceedings of the 23rd Particle Accelerat Conference. 2009: 122126.

    [58] Danailov M B, Deovich A, Ivanov R, et al. Perfmance of the Fermi FEL photoinject laser[C]Proceedings of the 29th International Free Electron Laser Conference. 2008: 358361.

    [59] Tournois P. Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems[J]. Optics Communications, 140, 245-249(1997).

    [60] Froehly C, Colombeau B, Vampouille M. II shaping and analysis of picosecond light pulses[J]. Progress in Optics, 20, 63-153(1983).

    [61] Liu Fangming. Research on spatiotempal arbitrary shaping of photocathode driven laser[D]. Beijing: Peking University, 2020

    [62] Luiten O J, van der Geer S B, de Loos M J et al. How to realize uniform three-dimensional ellipsoidal electron bunches[J]. Physical Review Letters, 93, 094802(2004).

    [63] Sharma A K, Tsang T, Rao T. Theoretical and experimental study of passive spatiotemporal shaping of picosecond laser pulses[J]. Physical Review Accelerators and Beams, 12, 033501(2009).

    [64] Feng Liwen, Wang Tianyi, Jia Haoyan. Peking University’s DC-SRF-II photoinjector drive laser system[J]. High Power Laser and Particle Beams, 34, 104016(2022).

    [65] Mironov S Y, Potemkin A K, Gacheva E I et al. Shaping of cylindrical and 3D ellipsoidal beams for electron photoinjector laser drivers[J]. Applied Optics, 55, 1630-1635(2016).

    [66] Rublack T, Good J, Khojoyan M, et al. First results attained with the quasi 3D ellipsoidal photo cathode laser pulse system at the high brightness photo inject PITZ[C]Proceedings of the 6th International Particle Accelerat Conference (IPAC2015). 2015: 15221525.

    [67] Mironov S Y, Poteomkin A K, Gacheva E I et al. Generation of 3D ellipsoidal laser beams by means of a profiled volume chirped Bragg grating[J]. Laser Physics Letters, 13, 055003(2016).

    [68] Prat E, Abela R, Aiba M et al. A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam[J]. Nature Photonics, 14, 748-754(2020).

    [69] Kaiser F, Köhler S, Peters F, et al. UV laser beam stabilization system f the European XFEL electron inject laser beamline[C]Proceedings of 2015 Conference on Lasers ElectroOptics (CLEO). 2015: 12.

    [70] Zhang R, Yoshida M, Zhou X, et al. Improvement of stable high output energy laser system f RFgun at SUPERKEKB inject. Chiba, Japan, 2016.

    [71] Alkeskjold T T, Laurila M, Scolari L et al. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier[J]. Optics Express, 19, 7398-7409(2011).

    [72] Jansen F, Stutzki F, Otto H J et al. Thermally induced waveguide changes in active fibers[J]. Optics Express, 20, 3997-4008(2012).

    [73] Laurila M, Jørgensen M M, Hansen K R et al. Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability[J]. Optics Express, 20, 5742-5753(2012).

    [74] Laurila M, Saby J, Alkeskjold T T et al. Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser[J]. Optics Express, 19, 10824-10833(2011).

    Yingtong Shi, Hang Xu, Jinqiang Xu, Senlin Huang. Research progress on high-brightness electron source drive laser system[J]. High Power Laser and Particle Beams, 2025, 37(2): 021001
    Download Citation