• Photonics Research
  • Vol. 13, Issue 4, 817 (2025)
Heyun Tan1,2, Junwei Zhang1,4,*, Jingyi Wang1, Songnian Fu2..., Siyuan Yu1 and Xinlun Cai1,3,5,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 2Institute of Advanced Photonics Technology, School of Information Engineering, and Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
  • 3Hefei National Laboratory, Hefei 230088, China
  • 4e-mail: zhangjw253@mail.sysu.edu.cn
  • 5e-mail: caixlun5@mail.sysu.edu.cn
  • show less
    DOI: 10.1364/PRJ.542998 Cite this Article Set citation alerts
    Heyun Tan, Junwei Zhang, Jingyi Wang, Songnian Fu, Siyuan Yu, Xinlun Cai, "High-linearity wide-bandwidth integrated thin-film lithium niobate modulator based on a dual-optical-mode co-modulated configuration," Photonics Res. 13, 817 (2025) Copy Citation Text show less
    References

    [1] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [2] H. Feng, T. Ge, X. Guo. Integrated lithium niobate microwave photonic processing engine. Nature, 627, 80-87(2024).

    [3] A. Chen, E. Murphy. Broadband Optical Modulators: Science, Technology, and Applications(2011).

    [4] A. Boes, B. Corcoran, L. Chang. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev., 12, 1700256(2018).

    [5] C. Wang, M. Zhang, X. Chen. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [6] M. Xu, M. He, H. Zhang. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [7] M. Xu, Y. Zhu, F. Pittalà. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica, 9, 61-62(2022).

    [8] M. He, M. Xu, Y. Ren. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100  Gbit/s and beyond. Nat. Photonics, 13, 359-364(2019).

    [9] A. Rao, A. Patil, P. Rabiei. High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50  GHz. Opt. Lett., 41, 5700-5703(2016).

    [10] H. Feng, K. Zhang, W. Sun. Ultra-high-linearity integrated lithium niobate electro-optic modulators. Photonics Res., 10, 2366-2373(2022).

    [11] B. Masella, B. Hraimel, X. Zhang. Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach-Zehnder modulator. J. Lightwave Technol., 27, 3034-3041(2009).

    [12] P. Kumar, S. Singla, S. K. Sharma. SFDR enhancement of 120 degrees phase angle-based RoF link by using linear polarizers. IEEE Photonics Technol. Lett., 31, 611-614(2019).

    [13] Z. Zhu, S. Zhao, X. Li. A linearized analog photonic link based on a single z-cut LiNbO3 dual-output Mach-Zehnder modulator. IEEE Photonics J., 9, 7201810(2017).

    [14] R. Zheng, E. H. W. Chan, X. Wang. Linearized single sideband modulation link with high SFDR performance. IEEE Photonics Technol. Lett., 31, 299-302(2019).

    [15] D. Zhu, J. Chen, S. Pan. Multi-octave linearized analog photonic link based on a polarization-multiplexing dual-parallel Mach-Zehnder modulator. Opt. Express, 24, 11009-11016(2016).

    [16] F. Wang, S. Shi, D. W. Prather. Microwave photonic link with improved SFDR using two parallel MZMs and a polarization beam combiner. J. Lightwave Technol., 37, 6156-6164(2019).

    [17] W. Wang, Y. Fan, R. Wang. Linearity optimization of multi-octave analog photonic links based on power weighting, polarization multiplexing and bias control. Opt. Express, 29, 2077-2089(2021).

    [18] Z. Zhu, S. Zhao, X. Li. Dynamic range improvement for an analog photonic link using an integrated electro-optic dual-polarization modulator. IEEE Photonics J., 8, 7903410(2016).

    [19] S. Chen, G. Zhou, L. Zhou. High-linearity Fano resonance modulator using a microring-assisted Mach-Zehnder structure. J. Lightwave Technol., 38, 3395-3403(2020).

    [20] C. Zhang, P. A. Morton, J. B. Khurgin. Ultralinear heterogeneously integrated ring-assisted Mach-Zehnder interferometer modulator on silicon. Optica, 3, 1483-1488(2016).

    [21] R. A. Cohen, O. Amrani, S. Ruschin. Linearized electro-optic racetrack modulator based on double injection method in silicon. Opt. Express, 23, 2252-2261(2015).

    [22] Y. Gu, J. Yao. Microwave photonic link with improved dynamic range through π phase shift of the optical carrier band. J. Lightwave Technol., 37, 964-970(2019).

    [23] Q. Zhang, H. Yu, L. Wang. Silicon dual-series Mach-Zehnder modulator with high linearity. Opt. Lett., 44, 5655-5658(2019).

    [24] H. Yamazaki, H. Takahashi, T. Goh. Optical modulator with a near-linear field response. J. Lightwave Technol., 34, 3796-3802(2016).

    [25] B. Dingel. Reduced complexity, low-power linear modulator for DAC-based multilevel coherent transmitters. IEEE Photonics Technol. Lett., 28, 717-720(2016).

    [26] S. Li, X. Zheng, H. Zhang. Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator. IEEE Photonics Technol. Lett., 22, 1775-1777(2010).

    [27] X. J. Meng, A. Karim. Microwave photonic link with carrier suppression for increased dynamic range. Fiber Integr. Opt., 25, 161-174(2006).

    Heyun Tan, Junwei Zhang, Jingyi Wang, Songnian Fu, Siyuan Yu, Xinlun Cai, "High-linearity wide-bandwidth integrated thin-film lithium niobate modulator based on a dual-optical-mode co-modulated configuration," Photonics Res. 13, 817 (2025)
    Download Citation