F. B. Rosmej1,2,3,4,a), V. A. Astapenko3, V. S. Lisitsa3,4,5, and L. A. Vainshtein6
Author Affiliations
1Sorbonne University, Faculty of Science and Engineering, UMR 7605, Case 128, 4 Place Jussieu, F-75252 Paris Cedex 05, France2LULI, Ecole Polytechnique, CNRS-CEA, Physique Atomique dans les Plasmas Denses (PAPD), Route de Saclay, F-91128 Palaiseau Cedex, France3Moscow Institute of Physics and Technology MIPT (National Research University), Dolgoprudnyi 141700, Russia4National Research Nuclear University—MEPhI, Department of Plasma Physics, Moscow 115409, Russia5National Research Center “Kurchatov Institute”, Moscow, Russia6P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russiashow less
Fig. 1. Energy-level diagram of the He-like autoionizing levels 2l2l′ and their associated radiative decays, so-called Lyα satellites. After radiative decay, the singly excited states 1s2l1,3L are formed, from which further radiative decay proceeds (e.g., the resonance and intercombination lines W and Y, respectively). Also indicated are the Li-like autoionizing levels 1s2l2l′.
Fig. 2. MARIA simulations of dielectronic satellite emission near Lyα of H-like Mg ions for different values of the electron density at kTe = 100 eV. The red arrows indicate the rises in intensity of particular satellite transitions with increasing density. Satellites indicated in blue have effective negative screening due to strong angular-momentum coupling effects.
Fig. 3. Comparison of the l-averaged statistical approach with the Burgess and quantum level-by-level calculations for the Ni-like sequence 3s23p63d10 of Xe26+ and Au51+.
Fig. 4. Comparison of the l-averaged statistical approach with the Burgess and quantum level-by-level calculations for the Sr-like sequence 4s24p64d2 of W36+ and the Zn-like sequence 4s2 of tungsten W44+.
Element | 1s22lnl′: α0 = 1s22s → α = 1s22p |
---|
| | |
---|
Be | 8.09 × 10−5 | … | 1.34 × 10−4 | C | 5.18 × 10−5 | … | 7.99 × 10−5 | Mg | 1.34 × 10−5 | … | 1.94 × 10−5 | Ar | 6.87 × 10−6 | … | 8.65 × 10−6 | Fe | 4.02 × 10−6 | … | 4.88 × 10−6 | Mo | 3.11 × 10−6 | … | 3.87 × 10−6 | | 1s23lnl′: α0 = 1s22s → α = 1s23p | Be | 3.44 × 10−5 | 1.97 × 10−6 | 2.88 × 10−5 | C | 6.45 × 10−5 | 6.61 × 10−6 | 6.98 × 10−5 | Mg | 6.43 × 10−5 | 2.57 × 10−5 | 6.96 × 10−5 | Ar | 4.55 × 10−5 | 2.42 × 10−5 | 5.15 × 10−5 | Fe | 2.61 × 10−5 | 1.57 × 10−5 | 3.54 × 10−5 | Mo | 8.61 × 10−6 | 6.48 × 10−6 | 1.89 × 10−5 | | 1s24lnl′: α0 = 1s22s → α = 1s24p | Be | 1.60 × 10−5 | 3.47 × 10−7 | 1.10 × 10−5 | C | 2.52 × 10−5 | 3.39 × 10−7 | 2.23 × 10−5 | Mg | 2.06 × 10−5 | 1.30 × 10−6 | 1.87 × 10−5 | Ar | 1.29 × 10−5 | 2.05 × 10−6 | 1.27 × 10−5 | Fe | 6.54 × 10−6 | 2.00 × 10−6 | 8.01 × 10−6 | Mo | 1.87 × 10−6 | 1.17 × 10−6 | 3.82 × 10−6 |
|
Table 1. Bd factors according to Eqs. (3.20) and (3.21) for DR into Li-like ions originating from the 1s2nln′l′ autoionizing levels, with Z = Zn − 2, m = 1, and l0 = 0. The numerical data show single- and multichannel approximations as well as the corresponding factors according to the Burgess approach (note that the different numerical coefficients and the oscillator strength in the original Burgess formula [Eq. (3.10)] compared with Eq. (3.20) have been included in the value for to facilitate comparison of the different methods).
| 2lnl′: α0 = 1s → α = 2p | 3lnl′: α0 = 1s→α = 3p |
---|
Element | Bd | χd | Bd | χd |
---|
He | 3.12 × 10−4 | 0.744 | 5.48 × 10−6 | 0.888 | Li | 3.72 × 10−4 | 0.736 | 6.41 × 10−6 | 0.887 | Be | 3.67 × 10−4 | 0.727 | 6.53 × 10−6 | 0.885 | B | 3.42 × 10−4 | 0.718 | 6.47 × 10−6 | 0.883 | C | 3.13 × 10−4 | 0.709 | 6.32 × 10−6 | 0.881 | N | 2.85 × 10−4 | 0.700 | 6.31 × 10−6 | 0.879 | O | 2.58 × 10−4 | 0.691 | 5.92 × 10−6 | 0.877 | F | 2.33 × 10−4 | 0.682 | 5.70 × 10−6 | 0.874 | Ne | 2.11 × 10−4 | 0.673 | 5.48 × 10−6 | 0.872 | Na | 1.90 × 10−4 | 0.665 | 5.26 × 10−6 | 0.870 | Mg | 1.72 × 10−4 | 0.657 | 5.04 × 10−6 | 0.868 | Al | 1.56 × 10−4 | 0.649 | 4.84 × 10−6 | 0.866 | Si | 1.41 × 10−4 | 0.642 | 4.63 × 10−6 | 0.863 | P | 1.27 × 10−4 | 0.636 | 4.43 × 10−6 | 0.861 | S | 1.15 × 10−4 | 0.630 | 4.24 × 10−6 | 0.859 | Cl | 1.05 × 10−4 | 0.624 | 4.05 × 10−6 | 0.857 | Ar | 9.50 × 10−5 | 0.620 | 3.87 × 10−6 | 0.856 | K | 8.61 × 10−5 | 0.616 | 3.69 × 10−6 | 0.854 | C | 7.82 × 10−5 | 0.612 | 3.52 × 10−6 | 0.852 | Sc | 7.09 × 10−5 | 0.609 | 3.35 × 10−6 | 0.851 | Ti | 6.45 × 10−5 | 0.606 | 3.19 × 10−6 | 0.849 | V | 5.85 × 10−5 | 0.604 | 3.04 × 10−6 | 0.848 | Cr | 5.33 × 10−5 | 0.602 | 2.89 × 10−6 | 0.847 | Mn | 4.85 × 10−5 | 0.601 | 2.74 × 10−6 | 0.846 | Fe | 4.42 × 10−5 | 0.599 | 2.60 × 10−6 | 0.845 | Co | 4.03 × 10−5 | 0.598 | 2.47 × 10−6 | 0.844 | Ni | 3.68 × 10−5 | 0.598 | 2.34 × 10−6 | 0.843 | Cu | 3.37 × 10−5 | 0.597 | 2.22 × 10−6 | 0.842 | Zn | 3.08 × 10−5 | 0.597 | 2.10 × 10−6 | 0.842 | Ga | 2.83 × 10−5 | 0.596 | 1.99 × 10−6 | 0.842 | Ge | 2.60 × 10−5 | 0.596 | 1.88 × 10−6 | 0.841 | As | 2.39 × 10−5 | 0.596 | 1.78 × 10−6 | 0.841 | Se | 2.20 × 10−5 | 0.596 | 1.68 × 10−6 | 0.841 | Br | 2.03 × 10−5 | 0.596 | 1.59 × 10−6 | 0.841 | Kr | 1.88 × 10−5 | 0.596 | 1.50 × 10−6 | 0.841 | Rb | 1.74 × 10−5 | 0.597 | 1.42 × 10−6 | 0.841 | Sr | 1.61 × 10−5 | 0.597 | 1.34 × 10−6 | 0.842 | Y | 1.50 × 10−5 | 0.597 | 1.27 × 10−6 | 0.842 | Zr | 1.39 × 10−5 | 0.598 | 1.20 × 10−6 | 0.842 | Nb | 1.30 × 10−5 | 0.599 | 1.13 × 10−6 | 0.843 | Mo | 1.21 × 10−5 | 0.599 | 1.07 × 10−6 | 0.843 |
|
Table 2. Fitting coefficients according to Eqs. (3.20) and (3.21) for DR into H-like ions originating from the 2lnl′ and 3lnl′ autoionizing levels, with Z = Zn, m = 1, and l0 = 0. The numerical data include corrections for multiple decay channels (two channels for 2lnl′ and four channels for 3lnl′).
| 1s2lnl′: α0 = 1s2 → α = 1s2p | 1s3lnl′: α0 = 1s2 → α = 1s3p |
---|
Element | Bd | χd | Bd | χd |
---|
Li | 3.39 × 10−5 | 1.11 | 1.57 × 10−6 | 1.27 | Be | 9.94 × 10−5 | 0.961 | 2.12 × 10−6 | 1.14 | B | 1.53 × 10−4 | 0.891 | 2.51 × 10−6 | 1.07 | C | 1.93 × 10−4 | 0.848 | 2.98 × 10−6 | 1.03 | N | 2.17 × 10−4 | 0.818 | 3.40 × 10−6 | 1.00 | O | 2.34 × 10−4 | 0.795 | 3.92 × 10−6 | 0.983 | F | 2.17 × 10−4 | 0.775 | 4.23 × 10−6 | 0.967 | Ne | 2.05 × 10−4 | 0.757 | 4.50 × 10−6 | 0.956 | Na | 1.88 × 10−4 | 0.740 | 4.56 × 10−6 | 0.945 | Mg | 1.72 × 10−4 | 0.726 | 4.54 × 10−6 | 0.937 | Al | 1.57 × 10−4 | 0.713 | 4.47 × 10−6 | 0.929 | Si | 1.43 × 10−4 | 0.701 | 4.36 × 10−6 | 0.922 | P | 1.30 × 10−4 | 0.690 | 4.22 × 10−6 | 0.916 | S | 1.18 × 10−4 | 0.681 | 4.07 × 10−6 | 0.910 | Cl | 1.07 × 10−4 | 0.672 | 3.92 × 10−6 | 0.905 | Ar | 9.72 × 10−5 | 0.664 | 3.76 × 10−6 | 0.901 | K | 8.83 × 10−5 | 0.658 | 3.61 × 10−6 | 0.897 | C | 8.02 × 10−5 | 0.652 | 3.45 × 10−6 | 0.893 | Sc | 7.28 × 10−5 | 0.647 | 3.30 × 10−6 | 0.889 | Ti | 6.62 × 10−5 | 0.642 | 3.15 × 10−6 | 0.886 | V | 6.02 × 10−5 | 0.638 | 3.01 × 10−6 | 0.883 | Cr | 5.47 × 10−5 | 0.635 | 2.87 × 10−6 | 0.880 | Mn | 4.98 × 10−5 | 0.632 | 2.73 × 10−6 | 0.877 | Fe | 4.54 × 10−5 | 0.629 | 2.60 × 10−6 | 0.875 | Co | 4.14 × 10−5 | 0.627 | 2.47 × 10−6 | 0.873 | Ni | 3.78 × 10−5 | 0.625 | 2.35 × 10−6 | 0.871 | Cu | 3.46 × 10−5 | 0.623 | 2.23 × 10−6 | 0.869 | Zn | 3.16 × 10−5 | 0.622 | 2.11 × 10−6 | 0.868 | Ga | 2.90 × 10−5 | 0.620 | 2.00 × 10−6 | 0.867 | Ge | 2.67 × 10−5 | 0.619 | 1.90 × 10−6 | 0.865 | As | 2.45 × 10−5 | 0.619 | 1.80 × 10−6 | 0.864 | Se | 2.26 × 10−5 | 0.618 | 1.70 × 10−6 | 0.864 | Br | 2.08 × 10−5 | 0.617 | 1.61 × 10−6 | 0.863 | Kr | 1.93 × 10−5 | 0.617 | 1.52 × 10−6 | 0.862 | Rb | 1.78 × 10−5 | 0.616 | 1.44 × 10−6 | 0.862 | Sr | 1.65 × 10−5 | 0.616 | 1.36 × 10−6 | 0.861 | Y | 1.53 × 10−5 | 0.616 | 1.29 × 10−6 | 0.861 | Zr | 1.43 × 10−5 | 0.616 | 1.22 × 10−6 | 0.861 | Nb | 1.33 × 10−5 | 0.616 | 1.15 × 10−6 | 0.861 | Mo | 1.24 × 10−5 | 0.616 | 1.09 × 10−6 | 0.861 |
|
Table 3. Fitting coefficients according to Eqs. (3.20) and (3.21) for DR into He-like ions originating from the 1s2lnl′ and 1s3lnl′ autoionizing levels, with Z = Zn − 1, m = 2, and l0 = 0. The numerical data include corrections for multiple decay channels (two channels for 1s2lnl′ and four channels for 1s3lnl′).
| 1s22lnl′: α0 = 1s22s → α = 1s22p | 1s23lnl′: α0 = 1s22s → α = 1s23p |
---|
Element | Bd | χd | Bd | χd |
---|
Be | 8.09 × 10−5 | 0.057 1 | 1.97 × 10−6 | 0.197 | B | 6.86 × 10−5 | 0.040 0 | 2.85 × 10−6 | 0.173 | C | 5.18 × 10−5 | 0.030 6 | 6.61 × 10−6 | 0.161 | N | 3.95 × 10−5 | 0.024 8 | 1.06 × 10−5 | 0.153 | O | 3.09 × 10−5 | 0.020 7 | 1.47 × 10−5 | 0.149 | F | 2.47 × 10−5 | 0.017 9 | 1.85 × 10−5 | 0.145 | Ne | 2.02 × 10−5 | 0.015 6 | 2.17 × 10−5 | 0.142 | Na | 1.69 × 10−5 | 0.013 9 | 2.41 × 10−5 | 0.140 | Mg | 1.43 × 10−5 | 0.012 6 | 2.57 × 10−5 | 0.138 | Al | 1.23 × 10−5 | 0.011 5 | 2.67 × 10−5 | 0.136 | Si | 1.07 × 10−5 | 0.010 5 | 2.71 × 10−5 | 0.135 | P | 9.43 × 10−6 | 0.009 81 | 2.69 × 10−5 | 0.133 | S | 8.41 × 10−6 | 0.009 14 | 2.60 × 10−5 | 0.131 | Cl | 7.57 × 10−6 | 0.008 58 | 2.53 × 10−5 | 0.130 | Ar | 6.87 × 10−6 | 0.008 09 | 2.42 × 10−5 | 0.128 | K | 6.25 × 10−6 | 0.007 72 | 2.31 × 10−5 | 0.127 | C | 5.76 × 10−6 | 0.007 36 | 2.19 × 10−5 | 0.126 | Sc | 5.35 × 10−6 | 0.007 04 | 2.09 × 10−5 | 0.124 | Ti | 5.00 × 10−6 | 0.006 77 | 1.97 × 10−5 | 0.123 | V | 4.67 × 10−6 | 0.006 58 | 1.86 × 10−5 | 0.122 | Cr | 4.42 × 10−6 | 0.006 37 | 1.76 × 10−5 | 0.120 | Mn | 4.20 × 10−6 | 0.006 20 | 1.66 × 10−5 | 0.119 | Fe | 4.02 × 10−6 | 0.006 05 | 1.57 × 10−5 | 0.118 | Co | 3.86 × 10−6 | 0.005 92 | 1.48 × 10−5 | 0.117 | Ni | 3.72 × 10−6 | 0.005 81 | 1.40 × 10−5 | 0.116 | Cu | 3.61 × 10−6 | 0.005 71 | 1.32 × 10−5 | 0.115 | Zn | 3.51 × 10−6 | 0.005 64 | 1.25 × 10−5 | 0.114 | Ga | 3.42 × 10−6 | 0.005 58 | 1.18 × 10−5 | 0.113 | Ge | 3.35 × 10−6 | 0.005 53 | 1.11 × 10−5 | 0.112 | As | 3.25 × 10−6 | 0.005 56 | 1.05 × 10−5 | 0.111 | Se | 3.20 × 10−6 | 0.005 54 | 9.96 × 10−6 | 0.110 | Br | 3.20 × 10−6 | 0.005 46 | 9.43 × 10−6 | 0.109 | Kr | 3.17 × 10−6 | 0.005 46 | 8.92 × 10−6 | 0.108 | Rb | 3.15 × 10−6 | 0.005 47 | 8.45 × 10−6 | 0.107 | Sr | 3.13 × 10−6 | 0.005 48 | 8.01 × 10−6 | 0.106 | Y | 3.12 × 10−6 | 0.005 51 | 7.59 × 10−6 | 0.105 | Zr | 3.11 × 10−6 | 0.005 54 | 7.20 × 10−6 | 0.105 | Nb | 3.11 × 10−6 | 0.005 58 | 6.83 × 10−6 | 0.104 | Mo | 3.11 × 10−6 | 0.005 63 | 6.48 × 10−6 | 0.103 |
|
Table 4. Fitting coefficients according to Eqs. (3.20) and (3.21) for DR into Li-like ions originating from the 1s22lnl′ and 1s23lnl′ autoionizing levels, with Z = Zn − 2, m = 1, and l0 = 0. The numerical data include corrections for multiple decay channels (one channel for 1s22lnl′ and four channels for 1s23lnl′).
| 1s23lnl′: α0 = 1s22p → α = 1s23d | 1s24lnl′: α0 = 1s22p → α = 1s24d |
---|
Element | Bd | χd | Bd | χd |
---|
Be | 1.78 × 10−4 | 0.140 | 1.88 × 10−5 | 0.190 | B | 2.99 × 10−4 | 0.137 | 2.01 × 10−5 | 0.189 | C | 3.74 × 10−4 | 0.135 | 2.04 × 10−5 | 0.188 | N | 4.44 × 10−4 | 0.133 | 2.18 × 10−5 | 0.187 | O | 5.15 × 10−4 | 0.131 | 2.35 × 10−5 | 0.187 | F | 5.52 × 10−4 | 0.130 | 2.53 × 10−5 | 0.186 | Ne | 5.65 × 10−4 | 0.128 | 2.67 × 10−5 | 0.185 | Na | 5.76 × 10−4 | 0.127 | 2.88 × 10−5 | 0.181 | Mg | 5.73 × 10−4 | 0.125 | 3.28 × 10−5 | 0.174 | Al | 5.61 × 10−4 | 0.124 | 3.32 × 10−5 | 0.172 | Si | 5.39 × 10−4 | 0.122 | 3.33 × 10−5 | 0.171 | P | 5.19 × 10−4 | 0.120 | 3.48 × 10−5 | 0.167 | S | 4.96 × 10−4 | 0.119 | 3.46 × 10−5 | 0.165 | Cl | 4.71 × 10−4 | 0.117 | 3.44 × 10−5 | 0.164 | Ar | 4.48 × 10−4 | 0.115 | 3.41 × 10−5 | 0.163 | K | 4.25 × 10−4 | 0.114 | 3.38 × 10−5 | 0.161 | C | 4.04 × 10−4 | 0.112 | 3.34 × 10−5 | 0.160 | Sc | 3.83 × 10−4 | 0.110 | 3.30 × 10−5 | 0.159 | Ti | 3.64 × 10−4 | 0.109 | 3.25 × 10−5 | 0.158 | V | 3.45 × 10−4 | 0.107 | 3.20 × 10−5 | 0.157 | Cr | 3.27 × 10−4 | 0.105 | 3.14 × 10−5 | 0.156 | Mn | 3.11 × 10−4 | 0.104 | 3.08 × 10−5 | 0.156 | Fe | 2.95 × 10−4 | 0.102 | 3.02 × 10−5 | 0.155 | Co | 2.80 × 10−4 | 0.101 | 2.95 × 10−5 | 0.154 | Ni | 2.66 × 10−4 | 0.0992 | 2.88 × 10−5 | 0.154 | Cu | 2.53 × 10−4 | 0.0978 | 2.80 × 10−5 | 0.153 | Zn | 2.40 × 10−4 | 0.0964 | 2.72 × 10−5 | 0.153 | Ga | 2.28 × 10−4 | 0.0951 | 2.64 × 10−5 | 0.153 | Ge | 2.17 × 10−4 | 0.0939 | 2.56 × 10−5 | 0.152 | As | 2.06 × 10−4 | 0.0927 | 2.47 × 10−5 | 0.152 | Se | 1.96 × 10−4 | 0.0916 | 2.39 × 10−5 | 0.152 | Br | 1.86 × 10−4 | 0.0905 | 2.30 × 10−5 | 0.152 | Kr | 1.77 × 10−4 | 0.0895 | 2.22 × 10−5 | 0.152 | Rb | 1.68 × 10−4 | 0.0885 | 2.14 × 10−5 | 0.152 | Sr | 1.60 × 10−4 | 0.0876 | 2.05 × 10−5 | 0.152 | Y | 1.52 × 10−4 | 0.0867 | 1.97 × 10−5 | 0.152 | Zr | 1.45 × 10−4 | 0.0859 | 1.89 × 10−5 | 0.152 | Nb | 1.38 × 10−4 | 0.0851 | 1.82 × 10−5 | 0.152 | Mo | 1.31 × 10−4 | 0.0844 | 1.74 × 10−5 | 0.152 |
|
Table 5. Fitting coefficients according to Eqs. (3.20) and (3.21) for DR into excited states of Li-like ions originating from the 1s23lnl′ and 1s24lnl′ autoionizing levels, with Z = Zn − 2, m = 1, and l0 = 1. The numerical data include corrections for multiple decay channels (three channels for 1s23lnl′ and six channels for 1s24lnl′).
State | Zn = 3 | Zn = 6 | Zn = 13 | Zn = 18 | Zn = 26 | Zn = 42 |
---|
2p21S0 | 8.4 × 1010 | 5.1 × 1012 | 1.3 × 1013 | 1.9 × 1013 | 3.4 × 1013 | 7.0 × 1013 | 2p21D2 | 1.5 × 1014 | 2.5 × 1014 | 3.1 × 1014 | 3.1 × 1014 | 2.3 × 1014 | 2.1 × 1014 | 2p23P0 | 2.9 × 107 | 2.3 × 109 | 2.3 × 1011 | 1.2 × 1012 | 3.7 × 1012 | 2.8 × 1012 | 2p23P1 | 0 | 0 | 0 | 0 | 0 | 0 | 2p23P1 with Breit interaction | 2.6 × 107 | 6.8 × 108 | 1.9 × 1010 | 7.2 × 1010 | 3.2 × 1011 | 2.2 × 1012 | 2p23P2 | 1.1 × 109 | 3.1 × 1010 | 3.0 × 1012 | 2.1 × 1013 | 1.1 × 1014 | 1.5 × 1014 |
|
Table 6. Field-free autoionization decay rates (s−1) including intermediate coupling, configuration, and magnetic interaction.