[1] H. R. Griem. Principles of Plasma Spectroscopy(1997).
[2] V. A. Astapenko, V. S. Lisitsa, F. B. Rosmej. Plasma Atomic Physics(2020).
[3] A. Burgess, A. Burgess. Dielectronic recombination and the temperature of the solar corona. Astrophys. J., 141, 776(1965).
[4] A. H. Gabriel. Dielectronic satellite spectra for highly-charge helium-like ion lines. Mon. Not. R. Astron. Soc., 160, 99(1972).
[5] I. Yu. Skobelev, V. A. Vinogradov, E. A. Yukov. Effect of collisions on the intensities of the dielectronic satellites of resonance lines of hydrogenlike ions. Sov. Phys. JETP, 45, 925(1977).
[6] M. Blaha, V. L. Jacobs. Effects of angular-momentum-changing collisions on dielectronic satellite spectra. Phys. Rev. A, 21, 525(1980).
[7] J. Abdallah, F. B. Rosmej. Blue satellite structure near Heα and Heβ and redistribution of level populations. Phys. Lett. A, 245, 548(1998).
[8] C. F. Hooper, V. L. Jacobs, L. A. Woltz. Effects of electric microfields on argon dielectronic satellite spectra in laser-produced plasmas. Phys. Rev. A, 44, 1281(1991).
[9] A. Calisti, E. Galtier, F. B. Rosmej et al. Interference effects and Stark broadening in XUV intra-shell transitions in aluminum under conditions of intense XUV free electron laser irradiation. Phys. Rev. A, 87, 033422(2013).
[10] F. B. Rosmej. Hot electron x-ray diagnostics. J. Phys. B: At., Mol. Opt. Phys., 30, L819(1997).
[11] S. H. Glenzer, R. W. Lee, F. B. Rosmej. Measurements of suprathermal electrons in hohlraum plasmas with x-ray spectroscopy. Phys. Rev. Lett., 81, 365(1998).
[12] A. Colaitis, O. Renner, M. Smid et al. Characterization of suprathermal electrons inside a laser accelerated plasma via highly-resolved Kα emission. Nat. Commun., 10, 4212(2019).
[13] E. Galtier, D. Riley, F. B. Rosmej et al. Decay of crystaline order and equilibration during solid-to-plasma transition induced by 20-fs microfocused 92 eV free electron laser pulses. Phys. Rev. Lett., 106, 164801(2011).
[14] R. W. Lee, F. B. Rosmej. Hollow ion emission driven by pulsed x-ray radiation fields. Europhys. Lett., 77, 24001(2007).
[15] J. Abdallah, J. Colgan, A. Y. Faenov et al. Exotic dense-matter states pumped by a relativistic laser plasma in the radiation-dominated regime. Phys. Rev. Lett., 110, 125001(2013).
[16] R. C. Elton, H. R. Griem, F. B. Rosmej et al. Investigation of charge exchange induced formation of two electron satellite transitions in dense laser produced plasmas. Phys. Rev. E, 66, 056402(2002).
[17] V. S. Lisitsa, F. B. Rosmej, R. Schott. Charge exchange driven X-ray emission from highly ionized plasma jets. Europhys. Lett., 76, 815(2006).
[18] V. S. Lisitsa, F. B. Rosmej. A self-consistent method for the determination of neutral density from X-ray impurity spectra. Phys. Lett. A, 244, 401(1998).
[19] V. S. Lisitsa, D. Reiter, F. B. Rosmej. Influence of charge exchange processes on X-ray spectra in TEXTOR tokamak plasmas: Experimental and theoretical investigation. Plasma Phys. Controlled Fusion, 41, 191(1999).
[20] V. S. Lisitsa, F. B. Rosmej. Non-equilibrium radiative properties in fluctuating plasmas. Plasma Phys. Rep., 37, 521(2011).
[21] A. Y. Faenov, F. B. Rosmej. New innershell phenomena from Rydberg series of highly charged ions. Phys. Scr., T73, 106(1997).
[22] A. Y. Faenov, T. A. Pikuz, F. B. Rosmej. Inner-shell satellite transitions in dense short pulse plasmas. J. Quant. Spectrosc. Radiat. Transfer, 58, 859(1997).
[23] A. Y. Faenov, T. A. Pikuz, F. B. Rosmej. Line formation of high intensity Heβ-Rydberg dielectronic satellites 1s3lnl′ in laser produced plasmas. J. Phys. B: At., Mol. Opt. Phys., 31, L921(1998).
[24] E. Krouský, O. Renner, F. B. Rosmej. Observation of H-like Al Lyα disappearance in dense cold laser produced plasmas. Appl. Phys. Lett., 79, 177(2001).
[25] B. Deschaud, O. Peyrusse, F. B. Rosmej. Simulation of XFEL induced fluorescence spectra of hollow ions and studies of dense plasma effects. Phys. Plasmas, 27, 063303(2020).
[26] I. I. Sobelman, L. A. Vainshtein. Excitation of Atomic Spectra(2006).
[27] C. Bowen, R. Florido, J. G. Rubiano. Review of the 4th NLTE code comparison workshop. High Energy Density Phys., 3, 225(2007).
[28] C. Bowen, H.-K. Chung, C. J. Fontes. Comparison and analysis of collisional-radiative models at the NLTE-7 workshop. High Energy Density Phys., 9, 645(2013).
[29] J. Colgan, C. F. Fontes, H. Zhang. Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV. Atoms, 3, 76(2015).
[30] A. Sommerfeld. Atombau und Spektrallinien(1978).
[31] V. I. Kogan, A. B. Kukushkin, V. S. Lisitsa. Kramers electrodynamics and electron-atomic radiative collisional processes. Phys. Rep., 213, 1(1992).
[32] R. D. Cowan. The Theory of Atomic Structure and Spectra(1981).
[33] G. W. F. Drake. Handbook of Atomic, Molecular, and Optical Physics(2006).
[34] S. N. Nahar, A. Pradhan. Atomic Astrophysics and Spectroscopy(2011).
[35] V. A. Astapenko. Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures and Solids(2013).
[36] U. I. Safronova, L. A. Vainshtein. Wavelengths and transition probabilities of satellites to resonance lines of H- and He-like ions. At. Data Nucl. Data Tables, 21, 49(1978).
[37] F. F. Goryaev, A. M. Urnov, L. A. Vainshtein. Atomic data for doubly-excited states 2lnl′ of He-like and 1s2lnl′ of Li-like ions with Z=6-36 and n=2,3. At. Data Nucl. Data Tables, 113, 117(2017).
[38] I. L. Beigman, B. N. Chichkov, L. A. Vainshtein. Dielectronic recombination. J. Exp. Theor. Phys., 53, 490(1981).
[39] V. S. Lisitsa. Atoms in Plasmas(1994).
[40] D. S. Leontyev, V. S. Lisitsa. Statistical model of dielectronic recombination of heavy ions in plasmas. Contrib. Plasma Phys., 56, 846(2016).
[41] A. V. Demura, D. S. Leont’iev, V. S. Lisitsa. Statistical dielectronic recombination rates for multielectron ions in plasma. J. Exp. Theor. Phys., 125, 663(2017).
[42] V. P. Shevelko, L. A. Vainshtein. Atomic Physics for Hot Plasmas(1993).
[43] V. P. Shevelko, L. A. Vainshtein(1996).
[44] L. A. Vainshtein. Proc. P. N. Lebedev Inst., 119, 3(1980).
[45] M. Mohan, F. Petitdemange, F. B. Rosmej. Dielectronic satellites and Auger electron heating: Irradiation of solids by intense XUV-free electron laser radiation. New Trends in Atomic & Molecular Physics: Advanced Technological Applications, 91-114(2013).
[46] F. B. Rosmej. Diagnostic properties of Be-like and Li-like satellites in dense transient plasmas under the action of highly energetic electrons. J. Quant. Spectrosc. Radiat. Transfer, 51, 319(1994).
[47] F. B. Rosmej. A new type of analytical model for complex radiation emission of hollow ions in fusion and laser produced plasmas. Europhys. Lett., 55, 472(2001).
[48] F. B. Rosmej. An alternative method to determine atomic radiation. Europhys. Lett., 76, 1081(2006).
[49] F. B. Rosmej, Y. Zou, R. Hutton. X-ray emission spectroscopy and diagnostics of non-equilibrium fusion and laser produced plasmas. Highly Charged Ion Spectroscopic Research, 267-341(2012).
[50] V. A. Astapenko, X. Li, F. B. Rosmej. An analytical plasma screening potential based on the self-consistent-field ion-sphere model. Phys. Plasmas, 26, 033301(2019).
[51] X. Li, F. B. Rosmej. Analytical approach to level delocalization and line shifts in finite temperature dense plasmas. Phys. Lett. A, 384, 126478(2020).
[52] H. A. Bethe, J. D. Hey, E. E. Salpeter. On the role of atomic metastability in the production of Balmer line radiation from cold atomic hydrogen, deuterium and hydrogenic ion impurities in fusion edge plasmas. J. Phys. B: At., Mol. Opt. Phys., 45, 065701(2012).
[53] J. Davis, V. L. Jacobs. Effects of plasma microfields on radiative transitions from atomic levels above the ionization threshold. Phys. Rev. A, 12, 2017(1975).
[54] J. Davis, V. L. Jacobs, P. C. Kepple. Enhancement of dielectronic recombination by plasma electric microfields. Phys. Rev. Lett., 37, 1390(1976).
[55] J. Davis, V. L. Jacobs. Properties of Rydberg autoionizing states in electric field. Phys. Rev. A, 19, 776(1979).
[56] I. P. Grant, M. F. Gu, N. C. Pyper. Breit interaction in multi-configuration relativistic atomic calculations. J. Phys. B: A., Mol. Phys., 9, 761(1976).
[57] L. A. Bureyeva, T. Kato, V. S. Lisitsa. Quasiclassical representation of autoionization decay reates in parabolic coordinates. J. Phys. B: At., Mol. Opt. Phys., 34, 3909(2001).
[58] L. A. Bureyeva, T. Kato, V. S. Lisitsa et al. Quasiclassical theory of dielectronic recombination in plasmas. Phys. Rev. A, 65, 032702(2002).
[59] J. D. Hey, J. D. Hey, M. S. Pindzola, F. Robicheaux. On the use of the axially symmetric paraboloidal coordinate system in deriving some properties of Stark states of hydrogenic atomc and ions. J. Phys. A: Math. Theor., 52, 045203(2019).
[60] P. Gombas. Erweiterung der statistischen theroy des atoms. Z. Phys., 121, 523(1943).
[61] P. Gombas. Die statistische theorie des Atoms und ihre Anwendungen(1949).
[62] P. Gombás. Present state of the statistical theory of atoms. Rev. Mod. Phys., 35, 512(1963).
[63] C. Deutsch, P. Fromy, G. Maynard. Thomas-Fermi-like and average atom models for dense and hot matter. Phys. Plasmas, 3, 714(1996).
[64] E. H. Lieb, B. Simon. The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math., 23, 22(1977).
[65] G. Kemister, S. Nordholm. A radially restricted Thomas-Fermi theory for atoms. J. Chem. Phys., 76, 5043(1982).
[66] A. V. Demura, M. B. Kadomtsev, V. S. Lisitsa. Universal statistical approach to radiative and collisional processes with multielectron ions in plasmas. High Energy Density Phys., 15, 49(2015).
[67] A. Sommerfeld. Integrazione asintotica dell’equazione differentiale di Thomas–Fermi. Rend. R. Accad. Lincei, 15, 293(1932).
[68] V. D. Kirillow, B. A. Trubnikov, S. A. Trushin. Role of impurities in anomalous plasma resistance. Sov. J. Plasma Phys., 1, 117(1975).
[69] C. P. Balance, S. D. Loch, M. S. Pindzola et al. Dielectronic recombination of W35+. J. Phys. B: At., Mol. Opt. Phys., 43, 205201(2010).
[70] Y. Fu, X. Ma, Z. Wu. Electronic impact excitation and dielectronic recombination of highly charged tungsten ions. Atoms, 3, 474(2015).
[71] E. Behar, P. Mandelbaum, J. L. Schwob. Dielectronic recombination rate coefficients for highly-ionized Ni-like atoms. Phys. Rev. A, 54, 3070(1996).