• Journal of Inorganic Materials
  • Vol. 34, Issue 1, 96 (2019)
Hao XIONG1, Bo-Xin ZHANG1, Wei JIA2, Qing-Hong ZHANG1..., Hua-Qing XIE3, 1, 1, 2, 1 and 3|Show fewer author(s)
Author Affiliations
  • 11. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • 22. State Key Laboratory of Space Power Technology, Shanghai Institute of Power-Sources, Shanghai 200245, China
  • 33. College of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, China
  • show less
    DOI: 10.15541/jim20180172 Cite this Article
    Hao XIONG, Bo-Xin ZHANG, Wei JIA, Qing-Hong ZHANG, Hua-Qing XIE, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Polymer PVP Additive for Improving Stability of Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2019, 34(1): 96 Copy Citation Text show less
    References

    [1] M HADADIAN. CORREA-BAENA J P, GOHARSHADI E K, et al. Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation. Adv. Mater., 28, 8681-8686(2016).

    [2] H IM J, S KIM H, R LEE C et al. 2: 591-1-7(2012).

    [3] A MEITL M, E MENARD, Y SUN et al. Micro and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev., 107, 1117-1160(2007).

    [4] J JEON N, C KIM Y, H NOH J et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Mater., 13, 897-903(2014).

    [5] XIU-BIN GUO, JING LI, WEI YU et al. Improving microstructure and photoelectric performance of the perovskite material via mixed solvents.. Inorg. Mater., 32, 870-876(2017).

    [6] Y CHANG C, Y CHU C, C HUANG Y et al. Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Appl. Mater. Interfaces, 7, 4955-4961(2015).

    [7] J JEON N, H NOH J, S YANG W et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517, 476-480(2015).

    [8] Z LIU, S PANG, Z ZHOU et al. Interface engineering for high-performance perovskite hybrid solar cells. J. Mater. Chem. A, 3, 19205-19217(2015).

    [9] ZENG-HUA WANG, MIN ZHANG, XIAO-JIA ZHENG et al. Structural effect of TiO2 on the performance of MAPbBr3 solar cells.. Inorg. Mater., 33, 245-250(2018).

    [10] P QIN, H TAO, G YANG et al. Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A, 4, 3970-3990(2016).

    [11] K HONG C, S MALI S. Pin/nip type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale, 8, 10528-10540(2016).

    [12] WEN-LONG JIANG, JI-FEI YING, WEI ZHOU et al. Thermal stable perovskite solar cells improved by ZnO/graphene oxide as electron transfer layers.. Inorg. Mater., 32, 96-100(2017).

    [13] CHANG LIU, SHUAI YUAN, HAI-LIANG ZHANG et al. p-type CuI films grown by iodination of copper and their application as hole transporting layers for inverted perovskite solar cells.. Inorg. Mater., 31, 358-364(2016).

    [14] X HUANG, S ZHANG, C ZHU et al. Porphyrin-dithienothiophene π-conjugated copolymers: synthesis and their applications in field- effect transistors and solar cells. Macromolecules, 41, 6895-6902(2008).

    [15] Y LI, Y RUI, H XIONG et al. Hydrophobic coating over a CH3NH3PbI3 absorbing layer towards air stable perovskite solar cells. J. Mater. Chem. C, 4, 6848-6854(2016).

    [16] T GLASER, C MÜLLER, M PLOGMYER et al. Water infiltration in methylammonium leadiodide perovskite: fast and inconspicuous. Chem. Mater., 27, 7835-7841(2015).

    [17] S AMEEN, A KOSA S, A RUB M et al. Perovskite solar cells: influence of hole transporting materials on power conversion efficiency. ChemSusChem, 9, 10-27(2016).

    [18] B LI, Y LI, C ZHENG et al. Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC Adv., 6, 38079-38091(2016).

    [19] M LYU, H YU, M ZHANG et al. Stable and low-cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly (3-hexylthiophene) layer as a hole transporter. Chem-Eur J., 21, 434-439(2015).

    [20] B CHAUDHARY, K JENA A, A KULKARNI et al. Poly (4-vinylpyridine)-based interfacial passivation to enhance voltage and moisture stability of lead halide perovskite solar cells. ChemSusChem, 10, 2473-2479(2017).

    [21] N CLIFFORD J, A HAQUE S, E PALOMARES et al. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers.. Am. Chem. Soc., 125, 475-482(2003).

    [22] C ALBERS F, D CORBETT J, S VON WINBUSH. The solubility of the post-transition metals in their molten halides.. Am. Chem. Soc., 79, 3020-3024(1957).

    [23] A DUBEY, S MABROUK, W ZHANG et al. Increased efficiency for perovskite photovoltaics via doping the PbI2 layer. J. Phys. Chem. C, 120, 24577-24582(2016).

    [24] Kosyachenko ed. L. A., 78-953-51- ISBN:, Approaches Solar Cells-New. -8. InTech(2184).

    [25] Q HU, T LIU, J WU et al. 6(3): 1501890-1-7(2016).

    [26] J JEON N, C KIM Y, H NOH J et al. 6(4): 1502104-1-8(2016).

    [27] H GUO, S JARIWALA, L ZUO et al. 3(8): e1700106-1-12(2017).

    Hao XIONG, Bo-Xin ZHANG, Wei JIA, Qing-Hong ZHANG, Hua-Qing XIE, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Polymer PVP Additive for Improving Stability of Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2019, 34(1): 96
    Download Citation