• Journal of Electronic Science and Technology
  • Vol. 22, Issue 4, 100287 (2024)
Yan Guo1, Hong-Chen Liu1, Fu-Jiang Liu2,*, Wei-Hua Lin2..., Quan-Sen Shao1 and Jun-Shun Su3|Show fewer author(s)
Author Affiliations
  • 1School of Computer Science, China University of Geosciences, Wuhan, 430078, China
  • 2School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430078, China
  • 3Xining Comprehensive Natural Resources Survey Centre, China Geological Survey (CGS), Xining, 810000, China
  • show less
    DOI: 10.1016/j.jnlest.2024.100287 Cite this Article
    Yan Guo, Hong-Chen Liu, Fu-Jiang Liu, Wei-Hua Lin, Quan-Sen Shao, Jun-Shun Su. Chinese named entity recognition with multi-network fusion of multi-scale lexical information[J]. Journal of Electronic Science and Technology, 2024, 22(4): 100287 Copy Citation Text show less
    References

    [1] Popovski G., Seljak B.K., Eftimov T.. A survey of named-entity recognition methods for food information extraction. IEEE Access, 8, 31586-31594(2020).

    [2] Yin D.-D., Cheng S.-Y., Pan B.-X., Qiao Y.-Y., Zhao W., Wang D.-Y.. Chinese named entity recognition based on knowledge based question answering system. Appl. Sci., 12, 5373:1-19(2022).

    [3] Li J., Sun A.-X., Han J.-L., Li C.-L.. A survey on deep learning for named entity recognition. IEEE T. Knowl. Data En., 34, 50-70(2020).

    [4] Li H.-Y., Shi Z., Pan C.-W., Zhao D., Sun N.. Cybersecurity knowledge graphs construction and quality assessment. Complex Intell. Syst., 10, 1201-1217(2024).

    [5] Hochreiter S., Schmidhuber J.. Long short-term memory. Neural Comput., 9, 1735-1780(1997).

    [6] Schuster M., Paliwal K.K.. Bidirectional recurrent neural networks. IEEE T. Signal Proces., 45, 2673-2681(1997).

    [7] An Y., Xia X.-Y., Chen X.-L., Wu F.-X., Wang J.-X.. Chinese clinical named entity recognition via multi-head self-attention based BiLSTM-CRF. Artif. Intell. Med., 127, 102282:1-12(2022).

    [8] Gridach M.. Character-level neural network for biomedical named entity recognition. J. Biomed. Inform., 70, 85-91(2017).

    [9] Seti X., Wumaier A., Yibulayin T., Paerhati D., Wang L.-L., Saimaiti A.. Named-entity recognition in sports field based on a character-level graph convolutional network. Information, 11, 30:1-16(2020).

    [10] Deng Z.-R., Tao Y., Lan R.-S., Yang R., Wang X.-Y.. Kcr-FLAT: A Chinese-named entity recognition model with enhanced semantic information. Sensors, 23, 1771:1-15(2023).

    [11] Tian X.-T., Bu X.-X., He L.. Multi-task learning with helpful word selection for lexicon-enhanced Chinese NER. Appl. Intell., 53, 19028-19043(2023).

    [12] Liu H.-T., Song J.-H., Peng W.-M., Sun J.-B., Xin X.-W.. TFM: A triple fusion module for integrating lexicon information in Chinese named entity recognition. Neural Process. Lett., 54, 3425-3442(2022).

    [13] Wang X.-L., Xu X.-R., Huang D.-G., Zhang T.. Multi-task label-wise transformer for Chinese named entity recognition. ACM T. Asian Low-Reso., 22, 118:1-15(2023).

    [14] Yan Y.-B., Zhu P., Cheng D.-W., Yang F.-Z., Luo Y.-F.. Adversarial multi-task learning for efficient Chinese named entity recognition. ACM T. Asian Low-Reso., 22, 193:1-19(2023).

    [15] Liu Q.-P., Zhang L.-L., Ren G., Zou B.-J.. Research on named entity recognition of Traditional Chinese Medicine chest discomfort cases incorporating domain vocabulary features. Comput. Biol. Med., 166, 107466:1-6(2023).

    [16] Nasar Z., Jaffry S.W., Malik M.K.. Named entity recognition and relation extraction: State-of-the-art. ACM Comput. Surv., 54, 20:1-39(2022).

    [17] J. Lafferty, A. McCallum, F.C.N. Pereira, Conditional rom fields: Probabilistic models f segmenting labeling sequence data, in: Proc. of the 18th Intl. Conf. on Machine Learning, Williamstown, USA, 2001, pp. 282–289.

    [18] Li W., Zhao D.-Z., Li B., Peng X.-M., Liu J.-R.. Combining CRF and rule based medical named entity recognition. Appl. Res. Comput., 32, 1082-1086(2015).

    [19] N.V. Sobhana, P. Mitra, S.K. Ghosh, Conditional rom field based named entity recognition in geological text, Int. J. Comput. Appl. 1 (3) (2010) 119–125.

    [20] E. Strubell, P. Verga, D. Belanger, A. McCallum, Fast accurate entity recognition with iterated dilated convolutions, in: Proc. of the Conf. on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017, pp. 2670–2680.

    [21] Chen T.-Y., Feng S.. Research on named entity recognition method and model stability of electronic medical record based on IDCNN+CRF and attention mechanism. China Digital Medicine, 17, 1-5(2022).

    [22] Hu H.-Y., Zhao C.-P., Ma L., Jiang H.-Z., Zhang J., Zhu W.-G.. Study on Chinese medical named entity recognition based on the dilated convolutional neural network. Journal of Medical Informatics, 42, 39-44(2021).

    [23] Zhao J.-Q., Zhu W.-T., Chen C.. Named entity recognition based on duplex convolution neural network model. Computer Technology and Development, 33, 187-192(2023).

    [24] J. Devlin, M.W. Chang, K. Lee, K. Toutanova, BERT: Pretraining of deep bidirectional transfmers f language understing, in: Proc. of the Conf. of the Nth American Chapter of the Association f Computational Linguistics: Human Language Technologies, Minneapolis, USA, 2019, pp. 4171–4186.

    [25] A. Radfd, K. Narasimhan, T. Salimans, I. Sutskever, Improving language understing by generative pretraining, Openai Blog, [Online]. Available, https:gwern.docwwws3uswest2.amazonaws.comd73fdc5ffa8627bce44dcda2fc012da638ffb158.pdf, 2018.

    [26] Z.J. Dai, X.T. Wang, P. Ni, Y.M. Li, G.M. Li, X.M. Bai, Named entity recognition using BERT BiLSTM CRF f Chinese electronic health recds, in: Proc. of the 12th Intl. Congress on Image Signal Processing, BioMedical Engineering Infmatics, Suzhou, China, 2019, pp. 1–5.

    [27] Yu Y.-Q., Wang Y.-Z., Mu J.-Q. et al. Chinese mineral named entity recognition based on BERT model. Expert Syst. Appl., 206, 117727:1-9(2022).

    [28] S.H. Wang, X.F. Sun, X.Y. Li, et al., GPTNER: Named entity recognition via large language models [Online]. Available, https:arxiv.gabs2304.10428, October 2023.

    [29] Yan H., Li Y., Lei Q.-X., Wang X.. Chinese named entity recognition method based on lexical information features. Journal of Chinese Computer Systems, 45, 1622-1628(2024).

    [30] Yang Z.-W., Ma J., Chen H.-C., Zhang J.-W., Chang Y.. Context-aware attentive multilevel feature fusion for named entity recognition. IEEE T. Neur. Net. Lear., 35, 973-984(2024).

    [31] Long K.-F., Zhao H., Shao Z.-Z. et al. Deep neural network with embedding fusion for Chinese named entity recognition. ACM T. Asian Low-Reso., 22, 91:1-16(2023).

    [32] Wang Y., Wang Z., Yu H., Wang G.-Y., Lei D.-J.. The interactive fusion of characters and lexical information for Chinese named entity recognition. Artif. Intell. Rev., 57, 258:1-21(2024).

    [33] Li M.-J., Huang R.-Q., Qi X.-X.. Chinese clinical named entity recognition using multi-feature fusion and multi-scale local context enhancement. Comput. Mater. Con., 80, 2283-2299(2024).

    [34] Qiu Q.-J., Tian M., Huang Z. et al. Chinese engineering geological named entity recognition by fusing multi-features and data enhancement using deep learning. Expert Syst. Appl., 238, 121925:1-17(2024).

    [35] L. Xu, Y. Tong, Q.Q. Dong, et al., CLUENER2020: Finegrained named entity recognition dataset benchmark f Chinese [Online]. Available, https:arxiv.gabs2001.04351, January 2020.

    [36] N.Y. Peng, M. Dredze, Named entity recognition f Chinese social media with jointly trained embeddings, in: Proc. of the Conf. on Empirical Methods in Natural Language Processing, Lisbon, Ptugal, 2015, pp. 548–554.

    [37] Z.M. Jie, P.J. Xie, W. Lu, R.X. Ding, L.L. Li, Better modeling of incomplete annotations f named entity recognition, in: Proc. of the Conf. of the Nth American Chapter of the Association f Computational Linguistics: Human Language Technologies, Minneapolis, USA, 2019, pp. 729–734.

    [38] S. Li, Z. Zhao, R.F. Hu, W.S. Li, T. Liu, X.Y. Du, Analogical reasoning on Chinese mphological semantic relations, in: Proc. of the 56th Annual Meeting of the Association f Computational Linguistics, Melbourne, Australia, 2018, pp. 138–143.

    [39] T. Mikolov, I. Sutskever, K. Chen, G.S. Crado, J. Dean, Distributed representations of wds phrases their compositionality, in: Proc. of the 26th Intl. Conf. on Neural Infmation Processing Systems, Lake Tahoe, USA, 2013, pp. 3111–3119.

    [40] Y. Goldberg, O. Levy, wd2vec explained: Deriving Mikolov et al.’s negativesampling wdembedding method [Online]. Available, https:arxiv.gabs1402.3722, February 2014.

    [41] X.W. Yin, S. Zheng, Q.M. Wang, Finegrained Chinese named entity recognition based on RoBERTaWWMBiLSTMCRF model, in: Proc. of the 6th Intl. Conf. on Image, Vision Computing, Qingdao, China, 2021, pp. 408–413.

    [42] S.Q. Li, J.J. Zeng, J.H. Zhang, T. Peng, L. Yang, H.F. Lin, ALBERTBiLSTM f sequential metaph detection, in: Proc. of the Second Wkshop on Figurative Language Processing, Virtual Event, 2020, pp. 110–115.

    [43] Y.H. Zhai, S.W. Tian, L. Yu, et al., Chinese acters Pinyin: A model with two parallel feature extracts f Chinese entity recognition [Online]. Available, https:www.researchsquare.comarticlers2282745v1, November 2022.

    [44] Z.Y. Xuan, R. Bao, S.Y. Jiang, FGN: Fusion glyph wk f Chinese named entity recognition, in: Proc. of the Knowledge Graph Semantic Computing: Knowledge Graph Cognitive Intelligence: 5th China Conf., Nanchang, China, 2021, pp. 28–40.

    [45] Y. Zhang, J. Yang, Chinese NER using lattice LSTM, in: Proc. of the 56th Annual Meeting of the Association f Computational Linguistics, Melbourne, Australia, 2018, pp. 1554–1564.

    [46] L.Z. Li, S. Zheng, Q.M. Wang, RoBERTa stacked bidirectional GRU f finegrained Chinese named entity recognition, in: Proc. of the 6th Intl. Conf. on Mathematics Artificial Intelligence, Chengdu, China, 2021, pp. 95–100.

    [47] T. Gui, R.T. Ma, Q. Zhang, L.J. Zhao, Y.G. Jiang, X.J. Huang, CNNbased Chinese NER with lexicon rethinking, in: Proc. of the 28th Intl. Joint Conf. on Artificial Intelligence, Macao, China, 2019, pp. 4982–4988.

    [48] T. Gui, Y.C. Zou, Q. Zhang, et al., A lexiconbased graph neural wk f Chinese NER, in: Proc. of the Conf. on Empirical Methods in Natural Language Processing the 9th Intl. Joint Conf. on Natural Language Processing, Hong Kong, China, 2019, pp. 1040–1050.

    [49] Zhang M., Lu L.. A local information perception enhancement-based method for Chinese NER. Appl. Sci., 13, 9948:1-19(2023).

    [50] Deng Z.-R., Huang Z., Wei S.-W., Zhang J.-L.. KCB-FLAT: Enhancing Chinese named entity recognition with syntactic information and boundary smoothing techniques. Mathematics, 12, 2714:1-18(2024).

    [51] Y.H. Yuan, Q.H. Zhang, X. Zhou, M. Gao, A Chinese named entity recognition model: Integrating label knowledge lexicon infmation, Int. J. Mach. Learn. Cyb. (May 2024), doi: 10.1007s13042024022072.

    [52] E.W. Zhu, Y.Y. Liu, J.P. Li, Deep span representations f named entity recognition, in: Proc. of the Findings of the Association f Computational Linguistics, Tonto, Canada, 2023, pp. 10565–10582.

    Yan Guo, Hong-Chen Liu, Fu-Jiang Liu, Wei-Hua Lin, Quan-Sen Shao, Jun-Shun Su. Chinese named entity recognition with multi-network fusion of multi-scale lexical information[J]. Journal of Electronic Science and Technology, 2024, 22(4): 100287
    Download Citation