• Optoelectronic Technology
  • Vol. 43, Issue 3, 212 (2023)
Yifeng LIU1,2, Junyang NIE4, Kaixin ZHANG1,2, Chang LIN1,2..., Min LI2, Qun YAN1,2,5 and Jie SUN1,2,3|Show fewer author(s)
Author Affiliations
  • 1National and Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, and Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 35000, CHN
  • 2Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China,Fuzhou 350100, CHN
  • 3Quantum Device Physics Laboratory, Chalmers University of Technology, Göteborg41296, Sweden
  • 4Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an71009, CHN
  • 5Rich Sense Electronics Technology Co., Ltd., Quanzhou Fujian 362200, CHN
  • show less
    DOI: 10.19453/j.cnki.1005-488x.2023.03.005 Cite this Article
    Yifeng LIU, Junyang NIE, Kaixin ZHANG, Chang LIN, Min LI, Qun YAN, Jie SUN. Liquid Deposition Method of Hafnium Oxide Thin Films[J]. Optoelectronic Technology, 2023, 43(3): 212 Copy Citation Text show less
    References

    [1] Xiong J, Ye H, Zhao J et al. Development of oxide thin films by electrochemical deposition[J]. Materials Protection, 35, 4-6(2002).

    [2] Chao Cai, Li J, Min Ζhao X et al. Preparation and development of transparent oxide films[J]. Materials Review, 21, 293-296(2007).

    [3] Palumbo F, Wen C, Lombardo S et al. A review on dielectric breakdown in thin dielectrics: Silicon dioxide, high‐k, and layered dielectrics[J]. Advanced Functional Materials, 30, 1900657(2020).

    [4] Toriumi A. High-k, higher-k and ferroelectric HfO2[J]. ECS Transactions, 80, 29(2017).

    [5] Green M L, Gusev E P, Degraeve R et al. Ultrathin (<4 nm) SiO2 and Si‑O‑N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits[J]. Journal of Applied Physics, 90, 2057-2121(2001).

    [6] Wang Y, Jia R, Zhao Y et al. Investigation of leakage current mechanisms in La2O3/SiO2/4H-SiC MOS capacitors with varied SiO2 thickness[J]. Journal of Electronic Materials, 45, 5600-5605(2016).

    [7] Kim S B, Ahn Y H, Park J Y et al. Enhanced nucleation and growth of HfO2 thin films grown by atomic layer deposition on graphene[J]. Journal of Alloys and Compounds, 742, 676-682(2018).

    [8] Yıldız D E, Karabulut A, Orak I et al. Effect of atomic-layer-deposited HfO2 thin-film interfacial layer on the electrical properties of Au/Ti/n-GaAs Schottky diode[J]. Journal of Materials Science: Materials in Electronics, 32, 10209-10223(2021).

    [9] Matsumoto S, Kaneda Y, Ito A. Highly self-oriented growth of (020) and (002) monoclinic HfO2 thick films using laser chemical vapor deposition[J]. Ceramics International, 46, 1810-1815(2020).

    [10] Gilmer D C, Hegde R, Cotton R et al. Compatibility of polycrystalline silicon gate deposition with HfO2 and Al2O3/HfO2 gate dielectrics[J]. Applied Physics Letters, 81, 1288-1290(2002).

    [11] Bak Y G, Park J W, Lee H Y. Characteristics of HfO2 thin film capacitor deposited by RF magnetron sputtering[J]. Journal of Nanoelectronics and Optoelectronics, 16, 919-925(2021).

    [12] Shimura R, Mimura T, Shimizu T et al. Preparation of near-1-µm-thick {100}-oriented epitaxial Y-doped HfO2 ferroelectric films on (100) Si substrates by a radio-frequency magnetron sputtering method[J]. Journal of the Ceramic Society of Japan, 128, 539-543(2020).

    [13] Salim E T, Khalid F G, Fakhri M A et al. Laser wavelength effects on the optical, structure, and morphological properties of nano HfO2 structures[J]. Materials Today: Proceedings, 42, 2422-2425(2021).

    [14] Luo Y, Tang Z, Yin X et al. Ferroelectricity in dopant-free HfO2 thin films prepared by pulsed laser deposition[J]. Journal of Materiomics, 8, 311-318(2022).

    [15] Lei P H, Da Yang C. Growth of SiO2 on InP substrate by liquid phase deposition[J]. Applied Surface Science, 256, 3757-3760(2010).

    [16] Lei C X, Feng Z D, Zhou H. Visible-light-driven photogenerated cathodic protection of stainless steel by liquid-phase-deposited TiO2 films[J]. Electrochimica Acta, 68, 134-140(2012).

    [17] Khatavkar S N, Sartale S D. α-Fe2O3 thin film on stainless steel mesh: A flexible electrode for supercapacitor[J]. Materials Chemistry and Physics, 225, 284-291(2019).

    [18] Fan M, Yang C, Pu W et al. Liquid phase deposition of ZnO film for photoelectrocatalytic degradation of p-nitrophenol[J]. Materials Science in Semiconductor Processing, 17, 104-109(2014).

    [19] Rao W, Sun J, Song C et al. Preparation of thin aluminum oxide films by chemical liquid phase deposition[J]. Journal of Harbin Institute of Technology, 35, 668-670(2003).

    [20] Li D L, Ruan L, Sun J et al. Facile growth of aluminum oxide thin film by chemical liquid deposition and its application in devices[J]. Nanotechnology Reviews, 9, 876-885(2020).

    [21] Fang Z, Dixon D A. Hydrolysis of ZrCl4 and HfCl4: The initial steps in the high-temperature oxidation of metal chlorides to produce ZrO2 and HfO2[J]. The Journal of Physical Chemistry C, 117, 7459-7474(2013).

    [22] Tan G Q, He Z L, Miao H Y et al. Self-assembled monolayers preparation of patterned HfO2 thin film[J]. Chinese Journal of Inorganic Chemistry, 25, 1853-1857(2009).

    [23] Feng J, Kriechbaum M, Liu L. In situ capabilities of small angle X-rays cattering[J]. Nanotechnology Reviews, 8, 352-369(2020).