• Photonics Research
  • Vol. 13, Issue 4, 837 (2025)
Long Huang1,2,†, Linhan Tang1,2,†, Yang Wang1,2, Minhui Cheng1,2..., B. E. Little1, Sai T. Chu3, Wei Zhao1,2, Weiqiang Wang4,5 and Wenfu Zhang1,2,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Department of Physics, City University of Hong Kong, Hong Kong 999077, China
  • 4School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China
  • 5e-mail: wangwqopt@163.com
  • show less
    DOI: 10.1364/PRJ.544681 Cite this Article Set citation alerts
    Long Huang, Linhan Tang, Yang Wang, Minhui Cheng, B. E. Little, Sai T. Chu, Wei Zhao, Weiqiang Wang, Wenfu Zhang, "Multi-channel Hong–Ou–Mandle interference between independent comb-based weak coherent pulses," Photonics Res. 13, 837 (2025) Copy Citation Text show less
    References

    [1] W. Luo, L. Cao, Y. Shi. Recent progress in quantum photonic chips for quantum communication and internet. Light Sci. Appl., 12, 175(2023).

    [2] G. Zhang, J. Y. Haw, H. Cai. An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photonics, 13, 839-842(2019).

    [3] A. Politi, M. J. Cryan, J. G. Rarity. Silica-on-silicon waveguide quantum circuits. Science, 320, 646-649(2008).

    [4] L. Cao, W. Luo, Y. X. Wang. Chip-based measurement-device-independent quantum key distribution using integrated silicon photonic systems. Phys. Rev. Appl., 14, 064041(2020).

    [5] D. Llewellyn, Y. Ding, I. I. Faruque. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys., 16, 148-153(2020).

    [6] J. C. Adcock, C. Vigliar, R. Santagati. Programmable four-photon graph states on a silicon chip. Nat. Commun., 10, 3528(2019).

    [7] J. Wang, S. Paesani, Y. Ding. Multidimensional quantum entanglement with large-scale integrated optics. Science, 360, 285-291(2018).

    [8] T. D. Ladd, F. Jelezko, R. Laflamme. Quantum computers. Nature, 464, 45-53(2010).

    [9] L. Labonté, O. Alibart, V. d’Auria. Integrated photonics for quantum communications and metrology. PRX Quantum, 5, 010101(2024).

    [10] C. Agnesi, B. Da Lio, D. Cozzolino. Hong–Ou–Mandel interference between independent III–V on silicon waveguide integrated lasers. Opt. Lett., 44, 271(2019).

    [11] M. Takeoka, S. Guha, M. M. Wilde. Fundamental rate-loss tradeoff for optical quantum key distribution. Nat. Commun., 5, 5235(2014).

    [12] S. Pirandola, R. Laurenza, C. Ottaviani. Fundamental limits of repeaterless quantum communications. Nat. Commun., 8, 15043(2017).

    [13] X.-B. Wang. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett., 94, 230503(2005).

    [14] A. Lamas-Linares, C. Kurtsiefer. Breaking a quantum key distribution system through a timing side channel. Opt. Express, 15, 9388-9393(2007).

    [15] H.-K. Lo, M. Curty, B. Qi. Measurement-device-independent quantum key distribution. Phys. Rev. Lett., 108, 130503(2012).

    [16] F. Xu, M. Curty, B. Qi. Practical aspects of measurement-device-independent quantum key distribution. New J. Phys., 15, 113007(2013).

    [17] C. K. Hong, Z. Y. Ou, L. Mandel. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett., 59, 2044-2046(1987).

    [18] R.-B. Jin, J. Zhang, R. Shimizu. High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field. Phys. Rev. A, 83, 031805(2011).

    [19] L. Huang, W. Wang, F. Wang. Massively parallel Hong–Ou–Mandel interference based on independent soliton microcombs. Sci. Adv., 11, eadq8982(2025).

    [20] X. Li, L. Yang, L. Cui. Observation of quantum interference between a single-photon state and a thermal state generated in optical fibers. Opt. Express, 16, 12505-12510(2008).

    [21] J. G. Rarity, P. R. Tapster, R. Loudon. Non-classical interference between independent sources. J. Opt. B, 7, S171-S175(2005).

    [22] T. Herr, V. Brasch, J. D. Jost. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2013).

    [23] A. A. Jørgensen, D. Kong, M. R. Henriksen. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nat. Photonics, 16, 798-802(2022).

    [24] P. Marin-Palomo, J. N. Kemal, M. Karpov. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [25] Z. L. Newman, V. Maurice, T. Drake. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [26] V. Brasch, E. Lucas, J. D. Jost. Self-referenced photonic chip soliton Kerr frequency comb. Light Sci. Appl., 6, e16202(2016).

    [27] Y. Wang, Z. Wang, X. Wang. Scanning dual-microcomb spectroscopy. Sci. China Phys. Mech. Astron., 65, 294211(2022).

    [28] Z. Lu, H.-J. Chen, W. Wang. Synthesized soliton crystals. Nat. Commun., 12, 3179(2021).

    [29] W. Weng, E. Lucas, G. Lihachev. Spectral purification of microwave signals with disciplined dissipative Kerr solitons. Phys. Rev. Lett., 122, 013902(2019).

    [30] T. Preuschoff, M. Schlosser, G. Birkl. Optimization strategies for modulation transfer spectroscopy applied to laser stabilization. Opt. Express, 26, 24010-24019(2018).

    [31] T. Legero, T. Wilk, A. Kuhn. Time-resolved two-photon quantum interference. Appl. Phys. B, 77, 797-802(2003).

    [32] H. K. Lo, J. Preskill. Phase randomization improves the security of quantum key distribution. arXiv(2005).

    [33] E. Moschandreou, J. I. Garcia, B. J. Rollick. Experimental study of Hong–Ou–Mandel interference using independent phase randomized weak coherent states. J. Lightwave Technol., 36, 3752-3759(2018).

    [34] C. Wang, F.-X. Wang, H. Chen. Realistic device imperfections affect the performance of Hong-Ou-Mandel interference with weak coherent states. J. Lightwave Technol., 35, 4996-5002(2017).

    [35] S. Wang, W. Chen, Z.-Q. Yin. Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express, 22, 21739-21756(2014).

    [36] A. R. Dixon, J. F. Dynes, M. Lucamarini. High speed prototype quantum key distribution system and long term field trial. Opt. Express, 23, 7583-7592(2015).

    [37] A. B. Dar, R. K. Jha. Chromatic dispersion compensation techniques and characterization of fiber Bragg grating for dispersion compensation. Opt. Quant. Electron., 49, 108(2017).

    Long Huang, Linhan Tang, Yang Wang, Minhui Cheng, B. E. Little, Sai T. Chu, Wei Zhao, Weiqiang Wang, Wenfu Zhang, "Multi-channel Hong–Ou–Mandle interference between independent comb-based weak coherent pulses," Photonics Res. 13, 837 (2025)
    Download Citation