Feng-xia CHEN, Tian-wei YANG, Jie-qing LI, Hong-gao LIU, Mao-pan FAN, Yuan-zhong WANG. Identification of Boletus Species Based on Discriminant Analysis of Partial Least Squares and Random Forest Algorithm[J]. Spectroscopy and Spectral Analysis, 2022, 42(2): 549

Search by keywords or author
- Spectroscopy and Spectral Analysis
- Vol. 42, Issue 2, 549 (2022)

Fig. 1. Boletus samples
(a):Boletus griseus Frost; (b): Boletus edulis Bull.: Fr;(c): Boletus umbriniporus Hongo; (d): Boletus speciosus Forst;(e): Leccinum rugosicepes (Perk) Sing;(f): Boletaceae bicolor Peck; (g): Boletus tomentipes Earle
(a):

Fig. 2. Average spectra of 7 species of Boletus
(a): Mid-infrared spectrum; (b): UV-Vis spectrum
(a): Mid-infrared spectrum; (b): UV-Vis spectrum

Fig. 3. Ntree selection diagram and Correct rate matrix
(a): Mid-level (LVs) Ntree best choice map; (b): Mid-level (CPA) Ntree best choice map;(c): Mid-level (LVs) Training set correct rate matrix; (d): Mid-level (CPA) Training set correct rate matrix;(e): Mid-level (LVs) Validation set correct rate matrix; (f): Mid-level (CPA) Validation set correct rate matrix
(a): Mid-level (LVs) Ntree best choice map; (b): Mid-level (CPA) Ntree best choice map;(c): Mid-level (LVs) Training set correct rate matrix; (d): Mid-level (CPA) Training set correct rate matrix;(e): Mid-level (LVs) Validation set correct rate matrix; (f): Mid-level (CPA) Validation set correct rate matrix
|
Table 1. Boletus samples information
|
Table 2. The main parameters and accuracy of the discriminant analysis model of partial least squares
|
Table 3. The main parameters and accuracy of the random forest model

Set citation alerts for the article
Please enter your email address