[1] Snaith H J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells[J]. The Journal of Physical Chemistry Letters, 4, 3623-3630(2013).
[2] Sutton R J, Eperon G E, Miranda L et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells[J]. Advanced Energy Materials, 6, 1502458(2016).
[3] Yin W J, Shi T T, Yan Y F. Unique properties of halide perovskites as possible origins of the superior solar cell performance[J]. Advanced Materials, 26, 4653-4658(2014).
[4] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nature Photonics, 8, 506-514(2014).
[5] Yang Y, Yang X L, He L H et al. Quasi-two-dimensional sky-blue perovskite light-emitting devices enhanced by hypophosphorous acid incorporation[J]. Acta Optica Sinica, 41, 1716001(2021).
[6] Fang H H, Li X Z, Zhou Y K et al. Ultrafast spectroscopy of hot carriers in perovskites[J]. Acta Optica Sinica, 41, 0823009(2021).
[7] Green M A, Dunlop E D, Hohl-Ebinger J et al. Solar cell efficiency tables (version 60)[J]. Progress in Photovoltaics: Research and Applications, 30, 687-701(2022).
[8] Conings B, Drijkoningen J, Gauquelin N et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite[J]. Advanced Energy Materials, 5, 1500477(2015).
[9] Liang J, Wang C X, Wang Y R et al. All-inorganic perovskite solar cells[J]. Journal of the American Chemical Society, 138, 15829-15832(2016).
[10] Yuan Y, Yan G H, Hong R J et al. Quantifying efficiency limitations in all-inorganic halide perovskite solar cells[J]. Advanced Materials, 34, 2108132(2022).
[11] Rong Y G, Hu Y, Mei A Y et al. Challenges for commercializing perovskite solar cells[J]. Science, 361, eaat8235(2018).
[12] Ke W J, Kanatzidis M G. Prospects for low-toxicity lead-free perovskite solar cells[J]. Nature Communications, 10, 965(2019).
[13] Farooq W, Tu S S, Iqbal K et al. An efficient non-toxic and non-corrosive perovskite solar cell[J]. IEEE Access, 8, 210617-210625(2020).
[14] Meng F Q, Yu B C, Zhang Q H et al. Ge incorporation to stabilize efficient inorganic CsPbI3 perovskite solar cells[J]. Advanced Energy Materials, 12, 2103690(2022).
[15] Artacho E, Anglada E, Diéguez O et al. The SIESTA method; developments and applicability[J]. Journal of Physics. Condensed Matter, 20, 064208(2008).
[16] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 77, 3865-3868(1996).
[17] Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations. Ⅱ. Operators for fast iterative diagonalization[J]. Physical Review B, 43, 8861-8869(1991).
[18] Steele J A, Jin H D, Dovgaliuk I et al. Thermal unequilibrium of strained black CsPbI3 thin films[J]. Science, 365, 679-684(2019).
[19] Zhou W, Sui F, Zhong G H et al. Lattice dynamics and thermal stability of cubic-phase CsPbI3 quantum dots[J]. The Journal of Physical Chemistry Letters, 9, 4915-4920(2018).
[20] Chen H, Li M H, Wang B et al. Structure, electronic and optical properties of CsPbX3 halide perovskite: a first-principles study[J]. Journal of Alloys and Compounds, 862, 158442(2021).
[21] Afsari M, Boochani A, ElectronicHantezadeh M.. optical and elastic properties of cubic perovskite CsPbI3: using first principles study[J]. Optik, 127, 11433-11443(2016).
[22] Padmavathy R, Amudhavalli A, Manikandan M et al. Electronic and optical properties of CsSnI3-yCly (y = 0, 1, 2, 3) perovskites: a DFT study[J]. Journal of Electronic Materials, 48, 1243-1251(2019).
[23] Su Y, Song K K, Zhong M et al. Stability and phonon-limited mobility for CsSnI3 and CsPbI3[J]. Journal of Alloys and Compounds, 889, 161723(2021).
[24] Gao L K, Tang Y L, Diao X F. First-principles study on the photoelectric properties of CsGeI3 under hydrostatic pressure[J]. Applied Sciences, 10, 5055(2020).
[25] Trots D M, Myagkota S V. High-temperature structural evolution of caesium and rubidium triiodoplumbates[J]. Journal of Physics and Chemistry of Solids, 69, 2520-2526(2008).
[26] Chung I, Song J H, Im J et al. CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions[J]. Journal of the American Chemical Society, 134, 8579-8587(2012).
[27] Hu M Y, Chen M, Guo P J et al. Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability[J]. Nature Communications, 11, 151(2020).
[28] Raj A, Kumar M, Singh P K et al. A computational approach to investigate the suitable ETL for lead-free CsGeI3 based perovskite solar cell[J]. Materials Today: Proceedings, 47, 1564-1569(2021).
[29] Jing H J, Sa R J, Xu G. Tuning electronic and optical properties of CsPbI3 by applying strain: a first-principles theoretical study[J]. Chemical Physics Letters, 732, 136642(2019).
[30] Li Y Q, Ullah S, Liu P et al. Theoretical study on the electronic and optical properties of strain-tuned CsPb(I1-xBrx)3 and CsSn(I1-xBrx)3[J]. Chemical Physics Letters, 763, 138219(2021).
[31] Filip M R, Eperon G E, Snaith H J et al. Steric engineering of metal-halide perovskites with tunable optical band gaps[J]. Nature Communications, 5, 5757(2014).
[32] Stoumpos C C, Frazer L, Clark D J et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties[J]. Journal of the American Chemical Society, 137, 6804-6819(2015).
[33] Grote C, Berger R F. Strain tuning of tin-halide and lead-halide perovskites: a first-principles atomic and electronic structure study[J]. The Journal of Physical Chemistry C, 119, 22832-22837(2015).
[34] Saha S, Sinha T P, Mookerjee A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3[J]. Physical Review B, 62, 8828-8834(2000).