• Laser & Optoelectronics Progress
  • Vol. 59, Issue 17, 1700004 (2022)
Pengfei Du, Wei Ye*, Sheng Xiao, and Mengfei Li
Author Affiliations
  • School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi , China
  • show less
    DOI: 10.3788/LOP202259.1700004 Cite this Article Set citation alerts
    Pengfei Du, Wei Ye, Sheng Xiao, Mengfei Li. Research Progress of Antimony-Based Type-II Superlattice InAs/InAsSb Infrared Detector[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1700004 Copy Citation Text show less
    References

    [1] Li J H, Niu L Y, Zheng Z J et al. Photosensitive graphene transistors[J]. Advanced Materials, 26, 5239-5273(2014).

    [2] Martyniuk P, Rogalski A. HOT infrared photodetectors[J]. Opto-Electronics Review, 21, 239-257(2013).

    [3] Hu W B, Zhang W, Gu C D. Review of molybdenum disulfide photodetectors[J]. Laser & Optoelectronics Progress, 58, 1900006(2021).

    [4] Li C, Yang Y W, Xia T et al. Integrated sensor based on laser-induced graphene on wood[J]. Chinese Journal of Lasers, 49, 0202005(2022).

    [5] Long M S, Wang P, Fang H H et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Advanced Functional Materials, 29, 1803807(2019).

    [6] Wang J, Luo L B. Advances in Ga2O3-based solar-blind ultraviolet photodetectors[J]. Chinese Journal of Lasers, 48, 1100001(2021).

    [7] Woolley J C, Smith B A. Solid solution in a IIIBV compounds[J]. Proceedings of the Physical Society, 72, 214-223(1958).

    [8] Soibel A, Hill C J, Keo S A et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors[J]. Infrared Physics & Technology, 70, 121-124(2015).

    [9] Klem J F, Kim J K, Cich M J et al. Comparison of nBn and nBp mid-wave barrier infrared photodetectors[J]. Proceedings of SPIE, 7608, 76081P(2010).

    [10] Rodriguez J B, Plis E, Bishop G et al. nBn structure based on InAs/GaSb type-II strained layer superlattices[J]. Applied Physics Letters, 91, 043514(2007).

    [11] Rafol S B, Soibel A, Khoshakhlagh A et al. Performance of a 1/4 VGA format long-wavelength infrared antimonides-based superlattice focal plane array[J]. IEEE Journal of Quantum Electronics, 48, 878-884(2012).

    [12] Vurgaftman I, Canedy C L, Jackson E M et al. Analysis and performance of type-Ⅱ superlattice infrared detectors[J]. Optical Engineering, 50, 061007(2011).

    [13] Nguyen B M, Hoffman D, Huang E K W et al. Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110 K[J]. Applied Physics Letters, 93, 123502(2008).

    [14] Salihoglu O, Muti A, Kutluer K et al. “N” structure for type-Ⅱ superlattice photodetectors[J]. Applied Physics Letters, 101, 073505(2012).

    [15] Gautam N, Kim H S, Kutty M N et al. Performance improvement of longwave infrared photodetector based on type-Ⅱ InAs/GaSb superlattices using unipolar current blocking layers[J]. Applied Physics Letters, 96, 231107(2010).

    [16] Aytac Y, Olson B V, Kim J K et al. Effects of layer thickness and alloy composition on carrier lifetimes in mid-wave infrared InAs/InAsSb superlattices[J]. Applied Physics Letters, 105, 022107(2014).

    [17] Wu D H, Li J K, Dehzangi A et al. Mid-wavelength infrared high operating temperature pBn photodetectors based on type-Ⅱ InAs/InAsSb superlattice[J]. AIP Advances, 10, 025018(2020).

    [18] Lü Y Q, Lu X, Lu Z X et al. Review of antimonide infrared detector development at home and abroad[J]. Aero Weaponry, 27, 1-12(2020).

    [19] Duan Y H, Cong M Y, Jiang D Y et al. Spectral response cutoff wavelength of ZnO ultraviolet photodetector modulated by bias voltage[J]. Acta Optica Sinica, 40, 2004001(2020).

    [20] Esaki L, Tsu R. Superlattice and negative differential conductivity in semiconductors[J]. IBM Journal of Research and Development, 14, 61-65(1970).

    [21] Smith D L, Mailhiot C. Proposal for strained type Ⅱ superlattice infrared detectors[J]. Journal of Applied Physics, 62, 2545-2548(1987).

    [22] Rogalski A, Martyniuk P, Kopytko M. InAs/GaSb type-Ⅱ superlattice infrared detectors: future prospect[J]. Applied Physics Reviews, 4, 031304(2017).

    [23] Svensson S P, Sarney W L, Hier H et al. Band gap of InAs1-xSbx with native lattice constant[J]. Physical Review B, 86, 245205(2012).

    [24] Lackner D, Steger M, Thewalt M L W et al. InAs/InAsSb strain balanced superlattices for optical detectors: material properties and energy band simulations[J]. Journal of Applied Physics, 111, 034507(2012).

    [25] Xu T F, Wang H L, Chen X Y et al. Recent progress on infrared photodetectors based on InAs and InAsSb nanowires[J]. Nanotechnology, 31, 294004(2020).

    [26] Tong J C, Tobing L Y M, Ni P N et al. High quality InAsSb-based heterostructure n-i-p mid-wavelength infrared photodiode[J]. Applied Surface Science, 427, 605-608(2018).

    [27] Ting D Z, Soibel A, Khoshakhlagh A et al. Advances in Ⅲ-V semiconductor infrared absorbers and detectors[J]. Infrared Physics & Technology, 97, 210-216(2019).

    [28] Lubyshev D, Fastenau J M, Kattner M et al. T2SL mid- and long-wave infrared photodetector structures grown on (211)B and (311)A GaSb substrates[J]. Proceedings of SPIE, 11002, 110020N(2019).

    [29] Yuan H B, Li L, Qiao Z L et al. Optical characteristics of GaAsP/GaInP quantum well grown by metal-organic chemical vapor deposition[J]. Chinese Journal of Lasers, 41, 0506002(2014).

    [30] Wu D H, Dehzangi A, Zhang Y Y et al. Demonstration of long wavelength infrared type-Ⅱ InAs/InAs1-xSbx superlattices photodiodes on GaSb substrate grown by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 112, 241103(2018).

    [31] Durlin Q, Perez J P, Cerutti L et al. Midwave infrared barrier detector based on Ga-free InAs/InAsSb type-Ⅱ superlattice grown by molecular beam epitaxy on Si substrate[J]. Infrared Physics & Technology, 96, 39-43(2019).

    [32] Michalczewski K, Kubiszyn Ł, Martyniuk P et al. Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate[J]. Infrared Physics & Technology, 95, 222-226(2018).

    [33] Kurtz S R, Biefeld R M. Magnetophotoluminescence of biaxially compressed InAsSb quantum wells[J]. Applied Physics Letters, 66, 364-366(1995).

    [34] Zhang Y H. Continuous wave operation of InAs/InAsxSb1-x midinfrared lasers[J]. Applied Physics Letters, 66, 118-120(1995).

    [35] Tang P J P, Pullin M J, Li Y B et al. A magneto-photoluminescence investigation of the band offset between InAs and arsenic-rich InAs1-xSbx alloys[J]. Applied Physics Letters, 69, 2501-2503(1996).

    [36] Ongstad A P, Kaspi R, Moeller C E et al. Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs-GaSb type-Ⅱ superlattices[J]. Journal of Applied Physics, 89, 2185-2188(2001).

    [37] Zhang Y H. Antimonide-related strained-layer heterostructures[J]. Optoelectronic Properties of Semiconductors and Superlattices, 3, 461(1997).

    [38] Sai-Halasz G A, Tsu R, Esaki L. A new semiconductor superlattice[J]. Applied Physics Letters, 30, 651-653(1977).

    [39] Ariyawansa G, Reyner C J, Steenbergen E H et al. InGaAs/InAsSb strained layer superlattices for mid-wave infrared detectors[J]. Applied Physics Letters, 108, 022106(2016).

    [40] Rogalski A, Martyniuk P, Kopytko M et al. InAsSb-based infrared photodetectors: thirty years later on[J]. Sensors, 20, 7047(2020).

    [41] Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature[J]. Applied Physics Letters, 89, 151109(2006).

    [42] Soibel A, Hill C J, Keo S A et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors[J]. Applied Physics Letters, 105, 023512(2014).

    [43] Steenbergen E H. InAsSb-based photodetectors[M]. Tournié E, Cerutti L. Mid-infrared optoelectronics, 415-453(2020).

    [44] Klipstein P C, Livneh Y, Glozman A et al. Modeling InAs/GaSb and InAs/InAsSb superlattice infrared detectors[J]. Journal of Electronic Materials, 43, 2984-2990(2014).

    [45] Delli E, Letka V, Hodgson P D et al. Mid-infrared InAs/InAsSb superlattice nBn photodetector monolithically integrated onto silicon[J]. ACS Photonics, 6, 538-544(2019).

    [46] Deng G R, Chen D Q, Yang S P et al. High operating temperature pBn barrier mid-wavelength infrared photodetectors and focal plane array based on InAs/InAsSb strained layer superlattices[J]. Optics Express, 28, 17611-17619(2020).

    [47] Cohen-Elias D, Uliel Y, Cohen N et al. Short wavelength infrared pBn GaSb/AlAsSb/InPSb photodetector[J]. Infrared Physics & Technology, 85, 81-85(2017).

    [48] Ashley T, Burke T M, Emeny M T et al. Epitaxial InSb for elevated temperature operation of large IR focal plane arrays[J]. Proceedings of SPIE, 5074, 95-102(2003).

    [49] Wu D H, Li J K, Dehzangi A et al. High performance InAs/InAsSb type-Ⅱ superlattice mid-wavelength infrared photodetectors with double barrier[J]. Infrared Physics & Technology, 109, 103439(2020).

    [50] Klipstein P C, Avnon E, Benny Y et al. InAs/GaSb type Ⅱ superlattice barrier devices with a low dark current and a high-quantum efficiency[J]. Proceedings of SPIE, 9070, 90700U(2014).

    [51] Ting D Z Y, Hill C J, Soibel A et al. A high-performance long wavelength superlattice complementary barrier infrared detector[J]. Applied Physics Letters, 95, 023508(2009).

    [52] Mallick S, Banerjee K, Ghosh S et al. Midwavelength infrared avalanche photodiode using InAs-GaSb strain layer superlattice[J]. IEEE Photonics Technology Letters, 19, 1843-1845(2007).

    [53] Ong D S G, Ng J S, Goh Y L et al. InAlAs avalanche photodiode with type-Ⅱ superlattice absorber for detection beyond 2 μm[J]. IEEE Transactions on Electron Devices, 58, 486-489(2011).

    [54] Huang J, Banerjee K, Ghosh S et al. Dual-carrier high-gain low-noise superlattice avalanche photodiodes[J]. IEEE Transactions on Electron Devices, 60, 2296-2301(2013).