• Acta Optica Sinica
  • Vol. 45, Issue 5, 0522002 (2025)
Lei Sheng1, Lijuan Li1,2,*, Xihong Fu3,4,**, Xuezhu Lin1,2, and Lili Guo1,2
Author Affiliations
  • 1Key Laboratory of Photoelectric Measurement and Optical Information Transmission Technology of Ministry of Education, School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin , China
  • 2Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, Guangdong , China
  • 3Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, Shaanxi , China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/AOS241722 Cite this Article Set citation alerts
    Lei Sheng, Lijuan Li, Xihong Fu, Xuezhu Lin, Lili Guo. Simulation Technology for Assembly of Off-Axis Three-Mirror Optical Systems Based on KAN-Transformer[J]. Acta Optica Sinica, 2025, 45(5): 0522002 Copy Citation Text show less
    Diagram of initial installation and adjustment
    Fig. 1. Diagram of initial installation and adjustment
    Flowchart of model construction
    Fig. 2. Flowchart of model construction
    Structure diagram of shallow MLP and KAN. (a) Shallow structure of MLP; (b) shallow structure of KAN
    Fig. 3. Structure diagram of shallow MLP and KAN. (a) Shallow structure of MLP; (b) shallow structure of KAN
    Structure diagram of KAN-Transformer
    Fig. 4. Structure diagram of KAN-Transformer
    Optical path diagram of a certain off-axis three-mirror optical system
    Fig. 5. Optical path diagram of a certain off-axis three-mirror optical system
    Production process of dataset
    Fig. 6. Production process of dataset
    MSE and MAE of different network structures under training dataset. (a) MSE; (b) MAE
    Fig. 7. MSE and MAE of different network structures under training dataset. (a) MSE; (b) MAE
    Linear distribution diagrams of small-scale predicted values and preset values based on Transformer. (a) X-decenter predicted values and preset values; (b) Y-decenter predicted values and preset values; (c) Z-decenter predicted values and preset values; (d) X-tilt predicted values and preset values; (e) Y-tilt predicted values and preset values; (f) Z-tilt predicted values and preset values
    Fig. 8. Linear distribution diagrams of small-scale predicted values and preset values based on Transformer. (a) X-decenter predicted values and preset values; (b) Y-decenter predicted values and preset values; (c) Z-decenter predicted values and preset values; (d) X-tilt predicted values and preset values; (e) Y-tilt predicted values and preset values; (f) Z-tilt predicted values and preset values
    Linear distribution diagram of small-scale predicted values and preset values based on KAN-Transformer. (a) X-decenter predicted values and preset values; (b) Y-decenter predicted values and preset values; (c) Z-decenter predicted values and preset values; (d) X-tilt predicted values and preset values; (e) Y-tilt predicted values and preset values; (f) Z-tilt predicted values and preset values
    Fig. 9. Linear distribution diagram of small-scale predicted values and preset values based on KAN-Transformer. (a) X-decenter predicted values and preset values; (b) Y-decenter predicted values and preset values; (c) Z-decenter predicted values and preset values; (d) X-tilt predicted values and preset values; (e) Y-tilt predicted values and preset values; (f) Z-tilt predicted values and preset values
    Design residual wavefront aberration for F(0°, 0°), F(2°, -2°), and F(2°, 2°) fields of view. (a) F(0°, 0°); (b) F(2°, -2°); (c) F(2°, 2°)
    Fig. 10. Design residual wavefront aberration for F(0°, 0°), F(2°, -2°), and F(2°, 2°) fields of view. (a) F(0°, 0°); (b) F(2°, -2°); (c) F(2°, 2°)
    Simulating wavefront aberration in the fields of F(0°, 0°), F(2°, -2°), and F(2°, 2°) after misalignment. (a) F(0°, 0°); (b) F(2°, -2°); (c) F(2°, 2°)
    Fig. 11. Simulating wavefront aberration in the fields of F(0°, 0°), F(2°, -2°), and F(2°, 2°) after misalignment. (a) F(0°, 0°); (b) F(2°, -2°); (c) F(2°, 2°)
    Wavefront aberration in the fields of F(0°, 0°), F(2°, -2°), and F(2°, 2°) after Simulated assembly. (a) F(0°, 0°); (b) F(2°, -2°); (c) F(2°, 2°)
    Fig. 12. Wavefront aberration in the fields of F(0°, 0°), F(2°, -2°), and F(2°, 2°) after Simulated assembly. (a) F(0°, 0°); (b) F(2°, -2°); (c) F(2°, 2°)
    Prediction errors of different network structures
    Fig. 13. Prediction errors of different network structures
    Field of F(0°, 0°), F(0°, 2°), and F(2°, 2°) of PV error value and RMS error value of the system. (a) F(0°, 0°) PV error; (b) F(0°,2°) PV error; (c) F(2°, 2°) PV error; (d) F(0°, 0°) RMS error; (e) F(0°, 2°) RMS error; (f) F(2°, 2°) RMS error
    Fig. 14. Field of F(0°, 0°), F(0°, 2°), and F(2°, 2°) of PV error value and RMS error value of the system. (a) F(0°, 0°) PV error; (b) F(0°,2°) PV error; (c) F(2°, 2°) PV error; (d) F(0°, 0°) RMS error; (e) F(0°, 2°) RMS error; (f) F(2°, 2°) RMS error
    Training process of neural network with added noise
    Fig. 15. Training process of neural network with added noise
    SurfaceRadius /mmSemi-diameter /mmThickness /mmConic
    Primary-mirror-1058.989175.286-276.007-1.315
    Second-mirror-324.06530.615319.1610.889
    Third-mirror-543.965176.171-321.6210.226
    Table 1. Design parameters of three-mirror optical system
    ParameterReference /mmOutput /mmError /mm
    Second-mirrorThird-mirrorSecond-mirrorThird-mirrorSecond-mirrorThird-mirror
    X-decenter-0.0517-0.0014-0.2249-0.1421-0.27660.1407
    Y-decenter0.46480.01290.0086-0.01180.45620.0247
    Z-decenter-0.28010.39030.79272.0239-1.0728-1.6336
    X-tilt-0.34230.4725-0.0212-0.0347-0.32110.5072
    Y-tilt-0.0021-0.0310-0.14560.08680.1435-0.1178
    Z-tiit0.0126-0.00220.0148
    Table 2. Comparison between sensitivity matrix method calculation results and preset values
    ParameterReference /mmOutput /mmError /mm
    Second-mirrorThird-mirrorSecond-mirrorThird-mirrorSecond-mirrorThird-mirror
    X-decenter-0.0517-0.0014-0.05730.00220.0056-0.0036
    Y-decenter0.46480.01290.47370.0076-0.00890.0053
    Z-decenter-0.28010.3903-0.28480.39660.0047-0.0063
    X-tilt-0.34230.4725-0.34880.47990.0062-0.0074
    Y-tilt-0.0021-0.0310-0.0115-0.02010.0094-0.0109
    Z-tiit0.01260.00510.0075
    Table 3. Comparison between neural network calculation results and preset values
    ParameterReference /mmOutput /mmError /mm
    Second-mirrorThird-mirrorSecond-mirrorThird-mirrorSecond-mirrorThird-mirror
    X-decenter-0.27660.1407-0.07450.0862-0.35110.0545
    Y-decenter0.45620.02470.52360.01940.06740.0053
    Z-decenter-1.0728-1.63360.2036-0.2051-1.2764-1.4285
    X-tilt-0.32110.5072-0.42340.68730.1023-0.1801
    Y-tilt0.1435-0.11780.0828-0.19320.06070.0754
    Z-tiit0.01480.0239-0.0091
    Table 4. Comparison between the second round sensitivity matrix method calculation results and preset values
    ParameterReference /mmOutput /mmError /mm
    Second-mirrorThird-mirrorSecond-mirrorThird-mirrorSecond-mirrorThird-mirror
    X-decenter0.0056-0.00360.0060-0.0032-0.0004-0.0004
    Y-decenter-0.00890.0053-0.00870.0044-0.00020.0009
    Z-decenter0.0047-0.00630.0053-0.0075-0.00060.0012
    X-tilt0.0062-0.00740.0055-0.00720.0007-0.0002
    Y-tilt0.0094-0.01090.0091-0.01080.0003-0.0001
    Z-tiit0.00750.00670.0008
    Table 5. Comparison between the results of the second round of neural network calculations and the preset values
    ParameterReference /mmOutput /mmError /mm
    Second-mirrorThird-mirrorSecond-mirrorThird-mirrorSecond-mirrorThird-mirror
    X-decenter-0.11850.2083-0.13320.19920.01470.0091
    Y-decenter0.1893-0.02740.1989-0.0352-0.00960.0105
    Z-decenter0.2306-0.0872-0.2219-0.09240.00870.0052
    X-tilt-0.00670.37250.00590.3814-0.0126-0.0089
    Y-tilt-0.40270.0181-0.3837-0.0063-0.01900.0118
    Z-tiit0.41260.4208-0.0082
    Table 6. Comparison between simulated noise training neural network of the first round of calculation results and preset values
    ParameterReference /mmOutput /mmError /mm
    Second-mirrorThird-mirrorSecond-mirrorThird-mirrorSecond-mirrorThird-mirror
    X-decenter0.01470.00910.01110.00740.00360.0017
    Y-decenter-0.00960.0105-0.01120.01120.0016-0.0007
    Z-decenter0.00870.00520.00680.00660.0019-0.0014
    X-tilt-0.0119-0.0089-0.0152-0.00970.00330.0008
    Y-tilt-0.01900.0118-0.01630.0144-0.0027-0.0026
    Z-tiit-0.0082-0.00940.0012
    Table 7. Comparison between simulated noise training neural network of the second round of calculation results and preset values
    Lei Sheng, Lijuan Li, Xihong Fu, Xuezhu Lin, Lili Guo. Simulation Technology for Assembly of Off-Axis Three-Mirror Optical Systems Based on KAN-Transformer[J]. Acta Optica Sinica, 2025, 45(5): 0522002
    Download Citation