• Nano-Micro Letters
  • Vol. 15, Issue 1, 228 (2023)
Linjie Zhang1, Na Jin1,2, Yibing Yang1, Xiao-Yong Miao3..., Hua Wang4, Jun Luo4,* and Lili Han1,**|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
  • 2College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, People’s Republic of China
  • 3State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai 200433, People’s Republic of China
  • 4ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01196-1 Cite this Article
    Linjie Zhang, Na Jin, Yibing Yang, Xiao-Yong Miao, Hua Wang, Jun Luo, Lili Han. Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review[J]. Nano-Micro Letters, 2023, 15(1): 228 Copy Citation Text show less
    References

    [1] A. Slamersak, G. Kallis, D.W. O’Neill, Energy requirements and carbon emissions for a low-carbon energy transition. Nat. Commun. 13, 6932 (2022).

    [2] K. Zhang, W. Guo, Z. Liang, R. Zou, Metal-organic framework based nanomaterials for electrocatalytic oxygen redox reaction. Sci. China Chem. 62, 417–429 (2019).

    [3] G.A. Abdalrb, I. Mircioiu, M. Amzoiu, I. Belu, V. Anuta, Microwave preparation of catalyst layer for enhancing the oxygen reduction of air cathode in microbial fuel cells. Curr. Health Sci. J. 43, 214–219 (2017).

    [4] T. Matthews, T.A. Mashola, K.A. Adegoke, K. Mugadza, C.T. Fakude et al., Electrocatalytic activity on single atoms catalysts: synthesis strategies, characterization, classification, and energy conversion applications. Coordin. Chem. Rev. 467, 214600 (2022).

    [5] H. Tian, A. Song, H. Tian, J. Liu, G. Shao et al., Single-atom catalysts for high-energy rechargeable batteries. Chem. Sci. 12, 7656–7676 (2021).

    [6] Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff et al., Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 139, 3336–3339 (2017).

    [7] L. Xue, Y. Li, X. Liu, Q. Liu, J. Shang et al., Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun. 9, 3819 (2018).

    [8] D. Gao, R.M. Arán-Ais, H.S. Jeon, B. Roldan Cuenya, Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019).

    [9] D. Zhao, Z. Chen, W. Yang, S. Liu, X. Zhang et al., MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 141, 4086–4093 (2019).

    [10] X. Zuo, K. Chang, J. Zhao, Z. Xie, H. Tang et al., Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J. Mater. Chem. A 4, 51–58 (2016).

    [11] L.-N. Zhang, Z.-L. Lang, Y.-H. Wang, H.-Q. Tan, H.-Y. Zang et al., Cable-like Ru/WNO@C nanowires for simultaneous high-efficiency hydrogen evolution and low-energy consumption chlor-alkali electrolysis. Energy Environ. Sci. 12, 2569–2580 (2019).

    [12] L. Han, X. Liu, J. Chen, R. Lin, H. Liu et al., Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem. Int. Ed. 131, 2343–2347 (2019).

    [13] L. Han, Z. Ren, P. Ou, H. Cheng, N. Rui et al., Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem. Int. Ed. 133, 349–354 (2021).

    [14] S. Chen, L. Kuo, Z. Jian, L. Qian, L. Xijun et al., In Situ Transmission electron microscopy and three-dimensional electron tomography for catalyst studies. Chin. J. Struct. Chem. 41, 2210056–2210076 (2022).

    [15] Z. Du, J. Liang, S. Li, Z. Xu, T. Li et al., Alkylthiol surface engineering: an effective strategy toward enhanced electrocatalytic N2-to-NH3 fixation by a CoP nanoarray. J. Mater. Chem. A 9, 13861–13866 (2021).

    [16] X. Luo, W. Wu, Y. Wang, Y. Li, J. Ye et al., Relay Catalysis of Multi-Sites Promotes Oxygen Reduction Reaction. Adv. Funct. Mater. 33, 2215021 (2023).

    [17] F.V.E. dos Reis, V.S. Antonin, P. Hammer, M.C. Santos, P.H.C. Camargo, Carbon-supported TiO2–Au hybrids as catalysts for the electrogeneration of hydrogen peroxide: investigating the effect of TiO2 shape. J. Catal. 326, 100–106 (2015).

    [18] Y. Guo, R. Zhang, S. Zhang, H. Hong, Y. Zhao et al., Ultrahigh oxygen-doped carbon quantum dots for highly efficient H2O2 production via two-electron electrochemical oxygen reduction. Energy Environ. Sci. 15, 4167–4174 (2022).

    [19] R. Ma, J. Wang, Y. Tang, J. Wang, Design strategies for single-atom iron electrocatalysts toward efficient oxygen reduction. J. Phys. Chem. Lett. 13, 168–174 (2021).

    [20] S. Xu, R. Lu, K. Sun, J. Tang, Y. Cen et al., Synergistic effects in N, O-comodified carbon nanotubes boost highly selective electrochemical oxygen reduction to H2O2. Adv. Sci. 9, 2201421 (2022).

    [21] F. An, X.-Q. Bao, X.-Y. Deng, Z.-Z. Ma, X.-G. Wang, Carbon-based metal-free oxygen reduction reaction electrocatalysts: past, present and future. New Carbon Mater. 37, 338–354 (2022).

    [22] B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    [23] Z. Lin, Q. Zhang, J. Pan, C. Tsounis, A.A. Esmailpour et al., Atomic Co decorated free-standing graphene electrode assembly for efficient hydrogen peroxide production in acid. Energy Environ. Sci. 15, 1172–1182 (2022).

    [24] W.J. Niu, J.Z. He, B.N. Gu, M.C. Liu, Y.L. Chueh, Opportunities and challenges in precise synthesis of transition metal single-atom supported by 2D Materials as catalysts toward oxygen reduction reaction. Adv. Funct. Mater. 31, 2103558 (2021).

    [25] X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng et al., Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019).

    [26] L. Han, M. Hou, P. Ou, H. Cheng, Z. Ren et al., Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 11, 509–516 (2020).

    [27] L. Han, S. Song, M. Liu, S. Yao, Z. Liang et al., Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 142, 12563–12567 (2020).

    [28] W. Liu, H. Li, P. Ou, J. Mao, L. Han et al., Isolated Cu-Sn diatomic sites for enhanced electroreduction of CO2 to CO. Nano Res. (2023).

    [29] M.B. Gawande, K. Ariga, Y. Yamauchi, Single-atom catalysts. Small 17, 2101584 (2021).

    [30] H. Chen, X. Liang, Y. Liu, X. Ai, T. Asefa et al., Active site engineering in porous electrocatalysts. Adv. Mater. 32, 2002435 (2020).

    [31] A. Kumar, G. Yasin, S. Ajmal, S. Ali, M.A. Mushtaq et al., Molecular MnN4-complex immobilized on carbon black as efficient electrocatalyst for oxygen reduction reaction. Inter. J. Hydrogen Energy 47, 17621–17629 (2022).

    [32] S. Chen, T. Luo, X. Li, K. Chen, J. Fu et al., Identification of the highly active Co-N4 coordination motif for selective oxygen reduction to hydrogen peroxide. J. Am. Chem. Soc. 144, 14505–14516 (2022).

    [33] L. Han, H. Cheng, W. Liu, H. Li, P. Ou et al., A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 21, 681–688 (2022).

    [34] L. Gao, X. Gao, P. Jiang, C. Zhang, H. Guo et al., Atomically dispersed iron with densely exposed active sites as bifunctional oxygen catalysts for zinc-air flow batteries. Small 18, 2105892 (2022).

    [35] L. Han, X. Liu, J. He, Z. Liang, H.T. Wang et al., Modification of the coordination environment of active sites on MoC for high-efficiency CH4 production. Adv. Energy Mater. 11, 2100044 (2021).

    [36] L. Liang, K.-Y. Niu, L. Zhang, J. Tian, K. Zhou et al., Engineering oxygen vacancies in mesocrystalline CuO nanosheets for water oxidation. ACS Appl. Nano Mater. 4, 6135–6144 (2021).

    [37] L. Zhang, X. Wang, R. Wang, M. Hong, Structural evolution from metal–organic framework to hybrids of nitrogen-doped porous carbon and carbon nanotubes for enhanced oxygen reduction activity. Chem. Mater. 27, 7610–7618 (2015).

    [38] M. Wang, H. Zhang, Y. Liu, Y. Pan, Research progress of precise structural regulation of single atom catalyst for accelerating electrocatalytic oxygen reduction reaction. J. Energy Chem. 72, 56–72 (2022).

    [39] J. Guo, Y. Zheng, Z. Hu, C. Zheng, J. Mao et al., Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 8, 264–272 (2023).

    [40] K. Du, L. Zhang, J. Shan, J. Guo, J. Mao et al., Interface engineering breaks both stability and activity limits of ruo2 for sustainable water oxidation. Nat. Commun. 13, 5448 (2022).

    [41] Y. Yang, K. Mao, S. Gao, H. Huang, G. Xia et al., O-, N-atoms-coordinated Mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv. Mater. 30, 1801732 (2018).

    [42] Y. Chen, R. Gao, S. Ji, H. Li, K. Tang et al., Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: enhanced oxygen reduction performance. Angew. Chem. Int. Ed. 60, 3212–3221 (2021).

    [43] X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen et al., Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew. Chem. Int. Ed. 57, 1944–1948 (2018).

    [44] Y. Xu, W. Zhang, Y. Li, P. Lu, Z.-S. Wu, A general bimetal-ion adsorption strategy to prepare nickel single atom catalysts anchored on graphene for efficient oxygen evolution reaction. J. Energy Chem. 43, 52–57 (2020).

    [45] Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam et al., Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10, 1392 (2019).

    [46] X. Tao, R. Lu, L. Ni, V. Gridin, S.H. Al-Hilfi et al., Facilitating the acidic oxygen reduction of Fe–N–C catalysts by fluorine-doping. Mater. Horiz. 9, 417–424 (2022).

    [47] W. Xu, W. Song, Y. Kang, L. Jiao, Y. Wu et al., Axial ligand-engineered single-atom catalysts with boosted enzyme-like activity for sensitive immunoassay. Anal. Chem. 93, 12758–12766 (2021).

    [48] H.C. Zhang, P.X. Cui, D.H. Xie, Y.J. Wang, P. Wang et al., Axial N ligand-modulated ultrahigh activity and selectivity hyperoxide activation over single-atoms nanozymes. Adv. Sci. 10, e2205681 (2023).

    [49] T. Chen, D. Zhou, S. Hou, Y. Li, Y. Liu et al., Designing hierarchically porous single atoms of Fe-N5 catalytic sites with high oxidase-like activity for sensitive detection of organophosphorus pesticides. Anal. Chem. 94, 15270–15279 (2022).

    [50] H. Zhang, L. Huang, J. Chen, L. Liu, X. Zhu et al., Bionic design of cytochrome C oxidase-like single-atom nanozymes for oxygen reduction reaction in enzymatic biofuel cells. Nano Energy 83, 105798 (2021).

    [51] C. Xu, Y.P. Zhang, T.L. Zheng, Z.Q. Wang, Y.M. Zhao et al., Contracted Fe-N5-C11 sites in single-atom catalysts boosting catalytic performance for oxygen reduction reaction. ACS Appl. Mater. Interfaces 15, 32341–32351 (2023).

    [52] Y.M. Zhao, P.C. Zhang, C. Xu, X.Y. Zhou, L.M. Liao et al., Design and preparation of Fe-N5 catalytic sites in single-atom catalysts for enhancing the oxygen reduction reaction in fuel cells. ACS Appl. Mater. Interfaces 12, 17334–17342 (2020).

    [53] F.X. Ma, Z.Q. Liu, G. Zhang, H.S. Fan, Y. Du et al., Self-sacrificing template synthesis of carbon nanosheets assembled hollow spheres with abundant active Fe-N4O1 moieties for electrocatalytic oxygen reduction. Small 19, 2207991 (2023).

    [54] T. Liu, Y. Wang, Y. Li, Two-dimensional organometallic frameworks with pyridinic single-metal-atom sites for bifunctional ORR/OER. Adv. Funct. Mater. 32, 2207110 (2022).

    [55] X. Liu, Y. Liu, W. Yang, X. Feng, B. Wang, Controlled Modification of axial coordination for transition-metal single-atom electrocatalyst. Chem 28, e202201471 (2022).

    [56] A. Pizarro, G. Abarca, C. Gutiérrez-Cerón, D. Cortés-Arriagada, F. Bernardi et al., Building pyridinium molecular wires as axial ligands for tuning the electrocatalytic activity of iron phthalocyanines for the oxygen reduction reaction. ACS Catal. 8, 8406–8419 (2018).

    [57] B. Ji, J. Gou, Y. Zheng, X. Pu, Y. Wang et al., Coordination chemistry of large-sized yttrium single-atom catalysts for oxygen reduction reaction. Adv. Mater. 35, e2300381 (2023).

    [58] J. Xi, H.S. Jung, Y. Xu, F. Xiao, J.W. Bae et al., Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Adv. Funct. Mater. 31, 2008318 (2021).

    [59] F. Xiao, G.-L. Xu, C.-J. Sun, M. Xu, W. Wen et al., Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy 61, 60–68 (2019).

    [60] X. Wang, Y. Wang, X. Sang, W. Zheng, S. Zhang et al., Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction. Angew. Chem. Int. Ed. 60, 4192–4198 (2021).

    [61] L. Peng, J. Yang, Y. Yang, F. Qian, Q. Wang et al., Mesopore-rich Fe–N–C catalyst with FeN4–O–NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 34, 2202544 (2022).

    [62] C. Xu, Y. Si, B. Hu, X. Xu, B. Hu et al., Promoting oxygen reduction via crafting bridge-bonded oxygen ligands on a single-atom iron catalyst. Inorg. Chem. Front 9, 3306–3318 (2022).

    [63] F. Luo, A. Roy, L. Silvioli, D.A. Cullen, A. Zitolo et al., P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nat. Mater. 19, 1215–1223 (2020).

    [64] L. Hu, C. Dai, L. Chen, Y. Zhu, Y. Hao et al., Metal-triazolate-framework-derived FeN4Cl1 single-atom catalysts with hierarchical porosity for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 27324–27329 (2021).

    [65] J. Huang, Q. Lu, X. Ma, X. Yang, Bio-inspired FeN5 moieties anchored on a three-dimensional graphene aerogel to improve oxygen reduction catalytic performance. J. Mater. Chem. A 6, 18488–18497 (2018).

    [66] G. Qu, K. Wei, K. Pan, J. Qin, J. Lv et al., Emerging materials for electrochemical CO2 reduction: progress and optimization strategies of carbon-based single-atom catalysts. Nanoscale 15, 3666–3692 (2023).

    [67] Y. Zhao, P.V. Kumar, X. Tan, X. Lu, X. Zhu et al., Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nat. Commun. 13, 2430 (2022).

    [68] Y. Dai, B. Liu, Z. Zhang, P. Guo, C. Liu et al., Tailoring the d-orbital splitting manner of single atomic sites for enhanced oxygen reduction. Adv. Mater. 35, 2210757 (2023).

    [69] J. Guo, X. Yan, Q. Liu, Q. Li, X. Xu et al., The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy 46, 347–355 (2018).

    [70] Y. Mu, T. Wang, J. Zhang, C. Meng, Y. Zhang et al., Single-atom catalysts: Advances and challenges in metal-support interactions for enhanced electrocatalysis. Electrochem. Energy Rev. 5, 145–186 (2022).

    [71] B. Yang, X. Li, Q. Cheng, X. Jia, Y. Liu et al., A highly efficient axial coordinated CoN5 electrocatalyst via pyrolysis-free strategy for alkaline polymer electrolyte fuel cells. Nano Energy 101, 107565 (2022).

    [72] J. Riquelme, K. Neira, J.F. Marco, P. Hermosilla-Ibáñez, W. Orellana et al., Biomimicking vitamin B12. A Co phthalocyanine pyridine axial ligand coordinated catalyst for the oxygen reduction reaction. Electrochim. Acta 265, 547–555 (2018).

    [73] W. Fan, Z. Duan, W. Liu, R. Mehmood, J. Qu et al., Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction. Nat. Commun. 14, 1426 (2023).

    [74] Z. Zhang, C. Feng, C. Liu, M. Zuo, L. Qin et al., Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat. Commun. 11, 1215 (2020).

    [75] J. Guo, H. Liu, D. Li, J. Wang, X. Djitcheu et al., A minireview on the synthesis of single atom catalysts. RSC Adv. 12, 9373–9394 (2022).

    [76] F.X. Hu, T. Hu, S. Chen, D. Wang, Q. Rao et al., Single-atom cobalt-based electrochemical biomimetic uric acid sensor with wide linear range and ultralow detection limit. Nano-Micro Lett. 13, 7 (2020).

    [77] T. Zhang, J. Jin, J. Chen, Y. Fang, X. Han et al., Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction. Nat. Commun. 13, 6875 (2022).

    [78] L. Li, Y. Wen, G. Han, F. Kong, L. Du et al., Architecting FeNx on high graphitization carbon for high-performance oxygen reduction by regulating d-band center. Small 19, e2300758 (2023).

    [79] W. Li, Z. Guo, J. Yang, Y. Li, X. Sun et al., Advanced strategies for stabilizing single-atom catalysts for energy storage and conversion. Electrochem. Energy Rev. 5, 9 (2022).

    [80] Y. Wang, J. Hao, Y. Liu, M. Liu, K. Sheng et al., Recent advances in regulating the performance of acid oxygen reduction reaction on carbon-supported non-precious metal single atom catalysts. J. Energy Chem. 76, 601–616 (2023).

    [81] H. Jin, Z. Xu, Z.Y. Hu, Z. Yin, Z. Wang et al., Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction. Nat. Commun. 14, 1518 (2023).

    [82] W. Liu, L. Han, H.-T. Wang, X. Zhao, J.A. Boscoboinik et al., FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis. Nano Energy 77, 105078 (2020).

    [83] X. Peng, R. Zhang, Y. Mi, H.T. Wang, Y.C. Huang et al., Disordered Au nanoclusters for efficient ammonia electrosynthesis. Chem. Sus. Chem. (2023).

    [84] L. Chai, L. Zhang, X. Wang, L. Xu, C. Han et al., Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance. Carbon 146, 248–256 (2019).

    [85] S. Sarkar, S.C. Peter, An overview on Pt3X Electrocatalysts for oxygen reduction reaction. Chem. Asian J. 16, 1184–1197 (2021).

    [86] W. Zhu, S. Chen, Recent progress of single-atom catalysts in the electrocatalytic reduction of oxygen to hydrogen peroxide. Electroanalysis 32, 2591–2602 (2020).

    [87] N. Wang, S. Ma, P. Zuo, J. Duan, B. Hou, Recent progress of electrochemical production of hydrogen peroxide by two-electron oxygen reduction reaction. Adv. Sci. 8, 2100076 (2021).

    [88] D.-W. Wang, D. Su, Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 7, 576–591 (2014).

    [89] X. Yang, C. Priest, Y. Hou, G. Wu, Atomically dispersed dual-metal-site PGM-free electrocatalysts for oxygen reduction reaction: opportunities and challenges. Sus. Mat. 2, 569–590 (2022).

    [90] L. Zhang, T. Gu, K. Lu, L. Zhou, D.S. Li et al., Engineering synergistic edge-N dipole in metal-free carbon nanoflakes toward intensified oxygen reduction electrocatalysis. Adv. Funct. Mater. 31, 2103187 (2021).

    [91] L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian et al., Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 6, 6590–6602 (2014).

    [92] S. Yuan, J. Zhang, L. Hu, J. Li, S. Li et al., Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew. Chem. Int. Ed. 60, 21685–21690 (2021).

    [93] J. Zhang, M. Zhang, Y. Zeng, J. Chen, L. Qiu et al., Single Fe atom on hierarchically porous S, N-codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable zn-air batteries. Small (2019).

    [94] N. Agarwal, S.J. Freakley, R.U. McVicker, S.M. Althahban et al., Aqueous Au–Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358, 223–227 (2017).

    [95] Y. Zhang, Q. Chen, A. Guo, X. Wang, Y. Wang et al., Carbon-nanosheet-driven spontaneous deposition of Au nanoparticles for efficient electrochemical utilizations toward H2O2 generation and detection. Chem. Eng. J. 445, 136586 (2022).

    [96] Y.R. Zheng, S. Hu, X.L. Zhang, H. Ju, Z. Wang et al., Black phosphorous mediates surface charge redistribution of CoSe2 for electrochemical H2O2 production in acidic electrolytes. Adv. Mater. 34, 2205414 (2022).

    [97] Y. Xia, X. Zhao, C. Xia, Z.Y. Wu, P. Zhu et al., Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 12, 4225 (2021).

    [98] S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvioli, V. Čolić et al., Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 8, 4064–4081 (2018).

    [99] J. Gao, B. Liu, Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts. ACS Mater. Lett. 2, 1008–1024 (2020).

    [100] A.R. Payne, Hysteresis of rubbers loaded with carbon black. Nature 201, 1213–1214 (1964).

    [101] J. Barrio, A. Pedersen, S.C. Sarma, A. Bagger, M. Gong et al., FeNC oxygen reduction electrocatalyst with high utilization penta-coordinated sites. Adv. Mater. (2023).

    [102] M.P. Oyarzún, N. Silva, D. Cortés-Arriagada, J.F. Silva, I.O. Ponce et al., Enhancing the electrocatalytic activity of Fe phthalocyanines for the oxygen reduction reaction by the presence of axial ligands: pyridine-functionalized single-walled carbon nanotubes. Electrochim. Acta 398, 139263 (2021).

    [103] Y. Zhou, Y.F. Xing, J. Wen, H.B. Ma, F.B. Wang et al., Axial ligands tailoring the ORR activity of cobalt porphyrin. Sci. Bull. 64, 1158–1166 (2019).

    [104] Y. Niu, X. Huang, W. Hu, Fe3C nanoparticle decorated Fe/N doped graphene for efficient oxygen reduction reaction electrocatalysis. J. Power Sources 332, 305–311 (2016).

    [105] P.J. Wei, G.Q. Yu, Y. Naruta, J.G. Liu, Covalent grafting of carbon nanotubes with a biomimetic heme model compound to enhance oxygen reduction reactions. Angew. Chem. Int. Ed. 53, 6659–6663 (2014).

    [106] L. Yang, Y. Wang, Z. Lu, R. Cheng, N. Wang et al., Construction of multi-dimensional NiCO/C/CNT/rGO aerogel by MOF derivative for efficient microwave absorption. Carbon 205, 411–421 (2023).

    [107] G. Panomsuwan, N. Saito, T. Ishizaki, Nitrogen-doped carbon nanoparticle-carbon nanofiber composite as an efficient metal-free cathode catalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 8, 6962–6971 (2016).

    [108] R. Venegas, F.J. Recio, J. Riquelme, K. Neira, J.F. Marco et al., Biomimetic reduction of O2 in an acid medium on iron phthalocyanines axially coordinated to pyridine anchored on carbon nanotubes. J. Mater. Chem. A 5, 12054–12059 (2017).

    [109] W. Zhang, E.J. Meeus, L. Wang, L.H. Zhang, S. Yang et al., Boosting electrochemical oxygen reduction performance of iron phthalocyanine through axial coordination sphere interaction. ChemSusChem (2022).

    [110] R. Cao, R. Thapa, H. Kim, X. Xu, M. Gyu Kim et al., Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 4, 2076 (2013).

    [111] W. Xia, Z. Hou, J. Tang, J. Li, W. Chaikittisilp et al., Materials informatics-guided superior electrocatalyst: a case of pyrolysis-free single-atom coordinated with N-graphene nanomesh. Nano Energy 94, 106868 (2022).

    [112] M. Viera, J. Riquelme, C. Aliaga, J.F. Marco, W. Orellana et al., Oxygen reduction reaction at penta-coordinated Co phthalocyanines. Front Chem. 8, 22 (2020).

    [113] F. Liu, G. Zhu, D. Yang, D. Jia, F. Jin et al., Systematic exploration of N, C configurational effects on the ORR performance of Fe–N doped graphene catalysts based on DFT calculations. RSC Adv. 9, 22656–22667 (2019).

    [114] F. Liu, N. Yan, G. Zhu, Z. Liu, S. Ma et al., Fe–N–C single-atom catalysts with an axial structure prepared by a new design and synthesis method for ORR. New J. Chem. 45, 13004–13014 (2021).

    [115] Y. Lin, P. Liu, E. Velasco, G. Yao, Z. Tian et al., Fabricating single-atom catalysts from chelating metal in open frameworks. Adv. Mater. 31, 1808193 (2019).

    [116] L. Li, Y.-J. Chen, H.-R. Xing, N. Li, J.-W. Xia et al., Single-atom Fe-N5 catalyst for high-performance zinc-air batteries. Nano Res. 15, 8056–8064 (2022).

    [117] Y. Qin, C. Guo, Z. Ou, C. Xu, Q. Lan et al., Regulating single-atom Mn sites by precisely axial pyridinic-nitrogen coordination to stabilize the oxygen reduction. J. Energy Chem. 80, 542–552 (2023).

    [118] Q. Wang, G. Long, X. Gao, J. Chen, C. You et al., A highly active and stable single-atom catalyst for oxygen reduction with axial Fe–O coordination prepared through a fast medium-temperature pyrolysis process. Appl. Catal. B: Environ. 337, 123009 (2023).

    [119] F. Kraushofer, G.S. Parkinson, Single-atom catalysis: Insights from model systems. Chem. Rev. 122, 14911–14939 (2022).

    [120] X. Wang, Y. An, L. Liu, L. Fang, Y. Liu et al., Atomically dispersed pentacoordinated-zirconium catalyst with axial oxygen ligand for oxygen reduction reaction. Angew. Chem. Int. Ed. 61, e202209746 (2022).

    [121] S. Zhang, Q. Zhou, L. Fang, R. Wang, T. Lu et al., Gram-scale synthesis and unraveling the activity origin of atomically dispersed Co-N4O sites toward superior electrocatalytic oxygen reduction. Appl. Catal. B: Environ. 328, 122489 (2023).

    [122] L. Cheng, H. Huang, Z. Lin, Y. Yang, Q. Yuan et al., N and O multi-coordinated vanadium single atom with enhanced oxygen reduction activity. J. Colloid Interface Sci. 594, 466–473 (2021).

    [123] Y. Liu, X. Liu, Z. Lv, R. Liu, L. Li et al., Tuning the spin state of the iron Center by bridge-bonded Fe-O-Ti ligands for enhanced oxygen reduction. Angew. Chem. Int. Ed. (2022).

    [124] K. Chen, K. Liu, P. An, H. Li, Y. Lin et al., Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 11, 4173 (2020).

    [125] P. Cao, X. Quan, X. Nie, K. Zhao, Y. Liu et al., Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nat. Commun. 14, 172 (2023).

    [126] C. Xiao, L. Cheng, Y. Zhu, G. Wang, L. Chen et al., Super-coordinated nickel N4Ni1O2 site single-atom catalyst for selective H2O2 electrosynthesis at high current densities. Angew. Chem. Int. Ed. 61, e202206544 (2022).

    [127] L. Li, S. Huang, R. Cao, K. Yuan, C. Lu et al., Optimizing microenvironment of asymmetric N, S-coordinated single-atom Fe via axial fifth coordination toward efficient oxygen electroreduction. Small 18, 2105387 (2022).

    [128] L. Gong, H. Zhang, Y. Wang, E. Luo, K. Li et al., Bridge bonded oxygen ligands between approximated FeN4 sites confer catalysts with high ORR performance. Angew. Chem. Int. Ed. 59, 13923–13928 (2020).

    [129] Y. Guo, H. Yin, F. Cheng, M. Li, S. Zhang et al., Altering ligand microenvironment of atomically dispersed CrN4 by axial ligand sulfur for enhanced oxygen reduction reaction in alkaline and acidic medium. Small 19, 2206861 (2023).

    [130] S. Li, L. Xia, J. Li, Z. Chen, W. Zhang et al., Tuning structural and electronic configuration of FeN4 via external S for enhanced oxygen reduction reaction. Energy Environ. Mater. (2023).

    [131] C. Chen, Z. Chen, J. Zhong, X. Song, D. Chen et al., Regulating electronic structure of CoN4 with axial Co-S for promoting oxygen reduction and zn-air battery performance. Nano Res. 16, 4211–4218 (2023).

    [132] C. Xin, W. Shang, J. Hu, C. Zhu, J. Guo et al., Integration of morphology and electronic structure modulation on atomic iron-nitrogen-carbon catalysts for highly efficient oxygen reduction. Adv. Funct. Mater. 32, 2108345 (2021).

    [133] Y. Han, Y. Wang, R. Xu, W. Chen, L. Zheng et al., Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 11, 2348–2352 (2018).

    [134] X. Zhang, L. Truong-Phuoc, X. Liao, V. Papaefthimiou, M. Pugliesi et al., Inducing atomically dispersed Cl-FeN4 sites for ORRs in the SiO2-mediated synthesis of highly mesoporous N-enriched C-networks. J. Mater. Chem. A 10, 6153–6164 (2022).

    [135] S. Ding, J.A. Barr, Q. Shi, Y. Zeng, P. Tieu et al., Engineering atomic single metal-fen(4)cl sites with enhanced oxygen-reduction activity for high-performance proton exchange membrane fuel cells. ACS Nano 16, 15165–15174 (2022).

    [136] A. Radwan, H. Jin, D. He, S. Mu, Design engineering, synthesis protocols, and energy applications of mof-derived electrocatalysts. Nano-Micro Lett. 13, 132 (2021).

    [137] B. Ji, J. Gou, Y. Zheng, X. Pu, Y. Wang et al., Coordination chemistry of large-size yttrium single-atom catalysts for oxygen reduction reaction. Adv. Mater. 35, 2300381 (2023).

    [138] K.M. Zhao, S. Liu, Y.Y. Li, X. Wei, G. Ye et al., Insight into the mechanism of axial ligands regulating the catalytic activity of Fe–N4 sites for oxygen reduction reaction. Adv. Energy Mater. 12, 2103588 (2022).

    [139] X. Yan, X. Xu, Q. Liu, J. Guo, L. Kang et al., Functionalization of multi-walled carbon nanotubes with iron phthalocyanine via a liquid chemical reaction for oxygen reduction in alkaline media. J. Power Sources 389, 260–266 (2018).

    [140] G. Luo, Y. Wang, Y. Li, Two-dimensional iron-porphyrin sheet as a promising catalyst for oxygen reduction reaction: a computational study. Sci. Bull 62, 1337–1343 (2017).

    [141] X. She, J. Gao, Y. Gao, H. Tang, K. Li et al., Axial ligand engineering for highly efficient oxygen reduction catalysts in transition metal–N4 doped graphene. New J. Chem. 46, 16138–16150 (2022).

    [142] R. Lu, C. Quan, C. Zhang, Q. He, X. Liao et al., Establishing a theoretical insight for penta-coordinated iron-nitrogen-carbon catalysts toward oxygen reaction. Nano Res. 15, 6067–6075 (2022).

    [143] F.X. Hu, T. Hu, S. Chen, D. Wang, Q. Rao et al., Single-atom cobalt-based electrochemical biomimetic uric acid sensor with wide linear range and ultralow detection limit. Nano-Micro Lett. 13, 7 (2021).

    [144] X. Zhu, X. Tan, K.-H. Wu, C.-L. Chiang, Y.-C. Lin et al., N, P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. J. Mater. Chem. A 7, 14732–14742 (2019).

    [145] X. Zeng, J. Shui, X. Liu, Q. Liu, Y. Li et al., Single-atom to single-atom grafting of Pt1 onto Fe–N4 Center: Pt1@Fe–N–C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mater. 8, 1701345 (2018).

    [146] B. Ji, J. Gou, Y. Zheng, X. Zhou, P. Kidkhunthod et al., Metalloid-cluster ligands enabling stable and active FeN4-Ten motifs for the oxygen reduction reaction. Adv. Mater. 34, 2202714 (2022).

    [147] L. Han, X. Peng, H.-T. Wang, P. Ou, Y. Mi et al., Chemically coupling SnO2 quantum dots and MXene for efficient CO2 electroreduction to formate and Zn–CO2 battery. Proc. Natl. Acad. Sci. (2022).

    [148] M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem. Rev. 114, 1709–1742 (2014).

    [149] J. Dong, Y. Cheng, Y. Li, X. Peng, R. Zhang et al., Abundant (110) facets on PdCu3 alloy promote electrochemical conversion of CO2 to CO. ACS Appl. Mater. Interfaces 14, 41969–41977 (2022).

    [150] D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13, 5 (2021).

    [151] X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li et al., Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13, 136 (2021).

    [152] J. Tuo, Y. Lin, Y. Zhu, H. Jiang, Y. Li et al., Local structure tuning in Fe-N-C catalysts through support effect for boosting CO2 electroreduction. Appl. Catal. B: Environ. 272, 118960 (2020).

    [153] H. Cheng, X. Wu, X. Li, Y. Zhang, M. Feng et al., Zeolitic imidazole framework-derived FeN5-doped carbon as superior CO2 electrocatalysts. J. Catal. 395, 63–69 (2021).

    [154] Z. Li, J. Jiang, X. Liu, Z. Zhu, J. Wang et al., Coupling atomically dispersed Fe-N5 sites with defective N-doped carbon boosts CO2 electroreduction. Small 18, 2203495 (2022).

    [155] J.R. Huang, X.F. Qiu, Z.H. Zhao, H.L. Zhu, Y.C. Liu et al., Single-product faradaic efficiency for electrocatalytic of CO2 to CO at current density larger than 1.2 A cm−2 in neutral aqueous solution by a single-atom nanozyme. Angew. Chem. Int. Ed. (2022).

    [156] H. Zhang, J. Li, S. Xi, Y. Du, X. Hai et al., A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 58, 14871–14876 (2019).

    [157] M. Zhu, J. Chen, R. Guo, J. Xu, X. Fang et al., Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction. Appl. Catal. B: Environ. 251, 112–118 (2019).

    [158] Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu et al., Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% co selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018).

    [159] X. Li, S.-G. Han, W. Wu, K. Zhang, B. Chen et al., Convergent paired electrosynthesis of dimethyl carbonate from carbon dioxide enabled by designing the superstructure of axial oxygen coordinated nickel single-atom catalysts. Energy Environ. Sci. 16, 502–512 (2023).

    [160] M. Huang, B. Deng, X. Zhao, Z. Zhang, F. Li et al., Template-sacrificing synthesis of well-defined asymmetrically coordinated single-atom catalysts for highly efficient CO2 electrocatalytic reduction. ACS Nano 16, 2110–2119 (2022).

    [161] J. Wang, Q. Hao, H. Zhong, K. Li, X. Zhang, Ligand centered electrocatalytic efficient CO2 reduction reaction at low overpotential on single-atom Ni regulated molecular catalyst. Nano Res. 15, 5816–5823 (2022).

    [162] X. Chen, W. Liu, Y. Sun, T. Tan, C.X. Du et al., KOH-enabled axial-oxygen coordinated Ni single-atom catalyst for efficient electrocatalytic CO2 reduction. Small Methods 7, 2201311 (2023).

    [163] T. Zhang, X. Han, H. Liu, M. Biset-Peiró, J. Li et al., Site-specific axial oxygen coordinated FeN4 active sites for highly selective electroreduction of carbon dioxide. Adv. Funct. Mater. 32, 2111446 (2022).

    [164] X. Wang, Y. Pan, H. Ning, H. Wang, D. Guo et al., Hierarchically micro- and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction. Appl. Catal. B: Environ. 266, 118630 (2020).

    [165] Z. Chen, A. Huang, K. Yu, T. Cui, Z. Zhuang et al., Fe1N4–O1 site with axial Fe–O coordination for highly selective CO2 reduction over a wide potential range. Energy Environ. Sci. 14, 3430–3437 (2021).

    [166] Y. Deng, J. Zhao, S. Wang, R. Chen, J. Ding et al., Operando spectroscopic analysis of axial oxygen-coordinated single-Sn-atom sites for electrochemical CO2 reduction. J. Am. Chem. Soc. 145, 7242–7251 (2023).

    [167] Y. Wu, C. Chen, X. Yan, X. Sun, Q. Zhu et al., Boosting CO2 electroreduction over a cadmium single-atom catalyst by tuning of the axial coordination structure. Angew. Chem. Int. Ed. 60, 20803–20810 (2021).

    [168] C. Hu, Y. Zhang, A. Hu, Y. Wang, X. Wei et al., Near- and long-range electronic modulation of single metal sites to boost CO2 electrocatalytic reduction. Adv. Mater. 35, 2209298 (2023).

    [169] Z. Li, R. Wu, S. Xiao, Y. Yang, L. Lai et al., Axial chlorine coordinated iron-nitrogen-carbon single-atom catalysts for efficient electrochemical CO2 reduction. Chem. Eng. J. 430, 132882 (2022).

    [170] B. Zhang, J. Zhang, J. Shi, D. Tan, L. Liu et al., Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 10, 2980 (2019).

    [171] J.-X. Peng, W. Yang, Z. Jia, L. Jiao, H.-L. Jiang, Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano Res. 15, 10063–10069 (2022).

    [172] C. Zhang, S. Yang, J. Wu, M. Liu, S. Yazdi et al., Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 8, 1703487 (2018).

    [173] Y. Li, B. Wei, Z. Li, L. Fan, Q. Jiang et al., Morphological attributes govern CO2 reduction on mesoporous carbon nanosphere with embedded axial Co-N5 sites. (2021). Preprint (Version 1) available at Research Square.

    [174] X. Hu, S. Yao, L. Chen, X. Zhang, M. Jiao et al., Understanding the role of axial O in CO2 electroreduction on NiN4 single-atom catalysts: via simulations in realistic electrochemical environment. J. Mater Chem. A 9, 23515–23521 (2021).

    [175] D. Zhou, X. Li, H. Shang, F. Qin, W. Chen, Atomic regulation of metal-organic framework derived carbon-based single-atom catalysts for the electrochemical CO2 reduction reaction. J. Mater. Chem. A 9, 23382–23418 (2021).

    [176] J. Wang, M. Zheng, X. Zhao, W. Fan, Structure-performance descriptors and the role of the axial oxygen atom on M-N4–C single-atom catalysts for electrochemical CO2 reduction. ACS Catal. 12, 5441–5454 (2022).

    [177] J. Wang, H. Li, S. Liu, Y. Hu, J. Zhang et al., Turning on Zn 4s electrons in a N2-Zn-B2 configuration to stimulate remarkable ORR performance. Angew. Chem. Int. Ed. 60, 181–185 (2021).

    [178] X. Sun, Y. Tuo, C. Ye, C. Chen, Q. Lu et al., Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem. Int. Ed. 60, 23614–23618 (2021).

    [179] L. Sun, V. Reddu, T. Su, X. Chen, T. Wu et al., Effects of axial functional groups on heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Small Struct. 2, 2100093 (2021).

    [180] M. Ma, Q. Tang, Axial coordination modification of M-N4 single-atom catalysts to regulate the electrocatalytic CO2 reduction reaction. J. Mater. Chem. C 10, 15948–15956 (2022).

    [181] Y. Liu, D. Wang, B. Yang, Z. Li, X. Peng et al., Efficiently electrochemical CO2 reduction on molybdenum-nitrogen-carbon catalysts with optimized p-block axial ligands. Chem. Eng. Sci. 273, 118638 (2023).

    [182] L. Zhang, L. Han, H. Liu, X. Liu, J. Luo, Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem. Int. Ed. 129, 13882–13886 (2017).

    [183] L. Zhang, Y. Yang, M.A. Ziaee, K. Lu, R. Wang, Nanohybrid of carbon quantum dots/molybdenum phosphide nanoparticle for efficient electrochemical hydrogen evolution in alkaline medium. ACS Appl. Mater. Interfaces 10, 9460–9467 (2018).

    [184] Y. Xu, X. Zhang, Y. Liu, R. Wang, Y. Yang et al., A critical review of research progress for metal alloy materials in hydrogen evolution and oxygen evolution reaction. Environ. Sci. Pollut. Res. 30, 11302–11320 (2023).

    [185] Y. Shi, Z.-R. Ma, Y.-Y. Xiao, Y.-C. Yin, W.-M. Huang et al., Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 12, 3021 (2021).

    [186] P. Zhu, X. Xiong, D. Wang, Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 15, 5792–5815 (2022).

    [187] D. Liu, G. Xu, H. Yang, H. Wang, B.Y. Xia, Rational design of transition metal phosphide-based electrocatalysts for hydrogen evolution. Adv. Funct. Mater. 33, 2208358 (2023).

    [188] X.P. Yin, H.J. Wang, S.F. Tang, X.L. Lu, M. Shu et al., Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57, 9382–9386 (2018).

    [189] M. Li, M. Wang, D. Liu, Y. Pan, S. Liu et al., Atomically-dispersed NiN4-Cl active sites with axial Ni–Cl coordination for accelerating electrocatalytic hydrogen evolution. J. Mater. Chem. A 10, 6007–6015 (2022).

    [190] Z. Li, B. Li, M. Yu, C. Yu, P. Shen, Amorphous metallic ultrathin nanostructures: a latent ultra-high-density atomic-level catalyst for electrochemical energy conversion. Int. J. Hydrog. Energy 47, 26956–26977 (2022).

    [191] J. Wang, S.-J. Kim, J. Liu, Y. Gao, S. Choi et al., Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4, 212–222 (2021).

    [192] B. Cheng, K. Kong, L. Zhang, R. Sa, T. Gu et al., Accelerating water oxidation kinetics via synergistic in-layer modification and interlayer reconstruction over hetero-epitaxial Fe-Mn-O nanosheets. Chem. Eng. J. 441, 136122 (2022).

    [193] J. Tian, F. Jiang, D. Yuan, L. Zhang, Q. Chen et al., Electric-field assisted in situ hydrolysis of bulk metal-organic frameworks (MOFs) into ultrathin metal oxyhydroxide nanosheets for efficient oxygen evolution. Angew. Chem. Int. Ed. 59, 13101–13108 (2020).

    [194] L. Zhang, T. Mi, M.A. Ziaee, L. Liang, R. Wang, Hollow POM@ MOF hybrid-derived porous Co3O4/CoMoO4 nanocages for enhanced electrocatalytic water oxidation. J. Mater. Chem. A 6, 1639–1647 (2018).

    [195] J. Wang, L. Han, B. Huang, Q. Shao, H.L. Xin et al., Amorphization activated ruthenium-tellurium nanorods for efficient water splitting. Nat. Commun. 10, 5692 (2019).

    [196] L. Han, P. Ou, W. Liu, X. Wang, H.-T. Wang et al., Design of Ru–Ni diatomic sites for efficient alkaline hydrogen oxidation. Sci. Adv. (2022).

    [197] W.H. Lee, Y.J. Ko, J.Y. Kim, B.K. Min, Y.J. Hwang et al., Single-atom catalysts for the oxygen evolution reaction: recent developments and future perspectives. Chem. Commun. 56, 12687–12697 (2020).

    [198] Q. Deng, J. Zhao, T. Wu, G. Chen, H.A. Hansen et al., 2D transition metal–TCNQ sheets as bifunctional single-atom catalysts for oxygen reduction and evolution reaction (ORR/OER). J. Catal. 370, 378–384 (2019).

    [199] Y.L. Zhang, B. Liu, Y.K. Dai, Y.F. Xia, P. Guo et al., Electronic delocalization regulates the occupancy and energy level of Co 3dz2 orbitals to enhance bifunctional oxygen catalytic activity. Adv. Funct. Mater. 32, 2209499 (2022).

    [200] T. Li, T. Lu, H. Zhong, S. Xi, M. Zhang et al., Atomically dispersed V-O2N3 sites with axial V–O coordination on multichannel carbon nanofibers achieving superior electrocatalytic oxygen evolution in acidic media. Adv. Energy Mater. 13, 2203274 (2022).

    [201] Y. Liu, S. Zhang, C. Jiao, H. Chen, G. Wang et al., Axial phosphate coordination in co single atoms boosts electrochemical oxygen evolution. Adv. Sci. 10, 2206107 (2023).

    [202] Y. Yang, C. Hu, J. Shan, C. Cheng, L. Han et al., Electrocatalytically activating and reducing N2 molecule by tuning activity of local hydrogen radical. Angew. Chem. Int. Ed. 62, e202300989 (2023).

    [203] Y. Huang, C. Tang, Q. Li, J. Gong, Computational studies for boosting nitrate electroreduction activity of Fe-N4-C Single-Atom catalyst via axial fifth ligand. Appl. Surf. Sci. 616, 156440 (2023).

    [204] L. Liu, T. Xiao, H. Fu, Z. Chen, X. Qu et al., Construction and identification of highly active single-atom Fe1-NC catalytic site for electrocatalytic nitrate reduction. Appl. Catal. B: Environ. 323, 122181 (2023).

    [205] A. Wu, J. Yang, B. Xu, X.-Y. Wu, Y. Wang et al., Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis. Appl. Catal. B: Environ. 299, 120667 (2021).

    Linjie Zhang, Na Jin, Yibing Yang, Xiao-Yong Miao, Hua Wang, Jun Luo, Lili Han. Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review[J]. Nano-Micro Letters, 2023, 15(1): 228
    Download Citation