• Chinese Optics Letters
  • Vol. 23, Issue 3, 030501 (2025)
Qingyang Yue1,2,3, Hao Ma1,2,3, Yabo Han1,2,3, Hongyi Huang1,2,3..., Xianlong Liu1,2,3, Yang Yang1,2,3,* and Chengshan Guo1,2,3|Show fewer author(s)
Author Affiliations
  • 1Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
  • 2Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan 250358, China
  • 3Joint Research Center of Light Manipulation Science and Photonic Integrated Chip of East China Normal University and Shandong Normal University, East China Normal University, Shanghai 200241, China
  • show less
    DOI: 10.3788/COL202523.030501 Cite this Article Set citation alerts
    Qingyang Yue, Hao Ma, Yabo Han, Hongyi Huang, Xianlong Liu, Yang Yang, Chengshan Guo, "Microsphere-assisted single-shot polarization holographic microscopy for quantitative birefringence imaging of dynamic samples," Chin. Opt. Lett. 23, 030501 (2025) Copy Citation Text show less
    References

    [1] B. Ge, Q. Zhang, R. Zhang et al. Single-shot quantitative polarization imaging of complex birefringent structure dynamics. ACS Photonics, 8, 3440(2021).

    [2] Q. Gong, C. M. Fan, F. Zhang et al. In vitro birefringence imaging with spectral domain polarization-sensitive optical coherence tomography. Chin. Opt. Lett., 6, 905(2008).

    [3] N. Blanke, V. Go, D. L. Rosene et al. Quantitative birefringence microscopy for imaging the structural integrity of CNS myelin following circumscribed cortical injury in the rhesus monkey. Neurophoton., 8, 015010(2021).

    [4] J. Cury, H. Smets, C. Bouzin et al. Optical birefringence changes in myelinated and unmyelinated nerves: a comparative study. J. Biophotonics, 15, e202200028(2022).

    [5] X. Liu, L. Jiang, M. Ke et al. Posterior scleral birefringence measured by triple-input polarization-sensitive imaging as a biomarker of myopia progression. Nat. Biomed. Eng., 7, 986(2023).

    [6] N. Blanke, S. Chang, A. Novoseltseva et al. Multiscale label-free imaging of myelin in human brain tissue with polarization-sensitive optical coherence tomography and birefringence microscopy. Biomed. Opt. Express, 14, 5946(2023).

    [7] V. K. Lam, T. Phan, K. Ly et al. Dual-modality digital holographic and polarization microscope to quantify phase and birefringence signals in biospecimens with a complex microstructure. Biomed. Opt. Express, 13, 805(2022).

    [8] A. Baroni, L. Bouchama, B. Dorizzi et al. Angularly resolved polarization microscopy for birefringent materials with Fourier ptychography. Opt. Express, 30, 38984(2022).

    [9] N. V. Chernomyrdin, D. R. Il’enkova, V. A. Zhelnov et al. Quantitative polarization-sensitive super-resolution solid immersion microscopy reveals biological tissues’ birefringence in the terahertz range. Sci. Rep., 13, 16596(2023).

    [10] S. X. Qi, S. Liu, P. Li et al. Measurement methods on polarization distribution of light fields and their applications (Invited). Acta Photonica Sin., 51, 0851502(2022).

    [11] L. Yang, R. H. Wang, Q. H. Zhao et al. Lensless polarimetric coded ptychography for high-resolution, high-throughput gigapixel birefringence imaging on a chip. Photonics Res., 11, 2242(2023).

    [12] H. Shi, J. X. Wen, B. B. Xing et al. Polarization and magneto-optical characteristics of Tb:YAG crystal-derived silica fiber via laser-heating drawing technique. Chin. Opt. Lett., 21, 110601(2023).

    [13] Y. Yang, H. Y. Huang, C. S. Guo. Polarization holographic microscope slide for birefringence imaging of anisotropic samples in microfluidics. Opt. Express, 28, 14762(2020).

    [14] Y. Shen, B. Chen, C. He et al. Polarization aberrations in high-numerical-aperture lens systems and their effects on vectorial-information sensing. Remote Sens., 14, 1932(2022).

    [15] V. Abbasian, T. Pahl, L. Hüser et al. Microsphere-assisted quantitative phase microscopy: a review. Light Adv. Manuf., 5, 133(2024).

    [16] Z. Wang, W. Guo, L. Li et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun., 2, 218(2011).

    [17] L. Chen, Y. Zhou, Y. Li et al. Microsphere enhanced optical imaging and patterning: From physics to applications. Appl. Phys. Rev., 6, 021304(2019).

    [18] A. Darafsheh. Microsphere-assisted microscopy. J. Appl. Phys., 131, 031102(2022).

    [19] C. Zhai, Y. Hong, Z. Lin et al. Addressing the imaging limitations of a microsphere-assisted nanoscope. Opt. Express, 30, 39417(2022).

    [20] Y. Deng, S. Yang, Y. Xia et al. Super-resolution imaging properties of cascaded microsphere lenses. Appl. Opt., 57, 5578(2018).

    [21] J. Wang, B. Yang, Z. Chen et al. Super-resolution imaging based on cascaded microsphere compound lenses. Appl. Opt., 62, 7868(2023).

    [22] Z. Xie, S. Hu, Y. Tang et al. 3D super-resolution reconstruction using microsphere-assisted structured illumination microscopy. IEEE Photon. Technol. Lett., 31, 1783(2019).

    [23] S. Li, H. Luo, F. Liu et al. Imaging properties of microsphere superlenses with varying background refractive indices under inclined illumination. Opt. Lett., 47, 5857(2022).

    [24] J. Wang, R. Jiang, S. Yang et al. Microsphere-assisted dark-field microscopy based on a fully immersed low refractive index microsphere. Opt. Lett., 48, 1858(2023).

    [25] Y. Hong, S. Xiao, C. Zhai et al. Microsphere probe: combining microsphere-assisted microscopy with AFM. Opt. Express, 31, 27520(2023).

    [26] Y. X. Wang, S. Guo, D. Y. Wang et al. Resolution enhancement phase-contrast imaging by microsphere digital holography. Opt. Commun., 366, 81(2016).

    [27] V. Abbasian, A.-R. Moradi. Microsphere-assisted super-resolved Mueller matrix microscopy. Opt. Lett., 45, 4336(2020).

    [28] X. B. Yan, J. L. Zhao, J. L. Di et al. Phase correction and resolution improvement of digital holographic image in numerical reconstruction with angular multiplexing. Chin. Opt. Lett., 7, 1072(2009).

    [29] Q. Y. Yue, Z. J. Cheng, L. Han et al. One-shot time-resolved holographic polarization microscopy for imaging laser-induced ultrafast phenomena. Opt. Express, 25, 14182(2017).

    [30] E. Sánchez-Ortiga, A. Doblas, G. Saavedra et al. Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit. Appl. Opt., 53, 2058(2014).

    [31] N. T. Shaked, V. Micó, M. Trusiak et al. Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing. Adv. Opt. Photonics, 12, 556(2020).

    [32] M. Postolache, D. G. Dimitriu, C. D. Nechifor et al. Birefringence of thin uniaxial polymer films estimated using the light polarization ellipse. Polymers, 14, 1063(2022).

    [33] C. Z. Yao, Y. Y. Ye, B. S. Jia et al. Polarization and fluence effects in femtosecond laser induced micro/nano structures on stainless steel with antireflection property. Appl. Surf. Sci., 425, 1118(2017).

    [34] K. Mishchik, G. Cheng, G. Huo et al. Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica. Opt. Express, 18, 24809(2010).

    Qingyang Yue, Hao Ma, Yabo Han, Hongyi Huang, Xianlong Liu, Yang Yang, Chengshan Guo, "Microsphere-assisted single-shot polarization holographic microscopy for quantitative birefringence imaging of dynamic samples," Chin. Opt. Lett. 23, 030501 (2025)
    Download Citation