[1] Liu Y G. Satellite Oceanography[M]. Beijing: Higher Education Press, 2009. (in Chinese)
[2] C P Gommenginger, M A Srokosz, P G Challenor, et al. Measuring ocean wave period with satellite altimeters: A simple empirical model. Geophysical Research Letters, 30, 2150(2003).
[3] Y Quilfen, B Chapron, F Collard, et al. Calibration/validation of an altimeter wave period model and application to TOPEX/Poseidon and Jason-1 altimeters. Marine Geodesy, 27, 535-549(2004).
[4] E B L Mackay, C H Retzler, P G Challenor, et al. A parametric model for ocean wave period from Ku band altimeter data. Journal of Geophysical Research: Oceans, 113, C03029(2008).
[5] Yang J S. Synthetic Aperture Radar Remote Sensing Technology f Sea Surface Wind Field, Ocean Wave Internal Wave[M]. Beijing: China Ocean Press, 2005. (in Chinese)
[6] T A Neumann, A J Martino, T Markus, et al. The Ice, Cloud, And Land Elevation Satellite–2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System. Remote Sensing of Environment, 233, 111325(2019).
[7] Neumann T, Brenner A, Hancock D, et al. Algithm theetical basis document (ATBD) f global geolocated photons[R]. Washington: National Aeronautics Space Administration, 2021.
[8] A Neuenschwander, K Pitts. The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sensing of Environment, 221, 247-259(2019).
[9] U C Herzfeld, B W McDonald, B F Wallin, et al. Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission. IEEE Transactions on Geoscience and Remote Sensing, 52, 2109-2125(2013).
[10] J Zhang, J Kerekes. An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data. IEEE Geoscience and Remote Sensing Letters, 12, 726-730(2014).
[11] Y Ma, R Liu, S Li, et al. Detecting the ocean surface from the raw data of the MABEL photon-counting lidar. Optics Express, 26, 24752-24762(2018).
[12] Trujillo A P, Thurman H V. Essentials of Oceanography[M]. 11st ed. Translated by Zhang Ronghua, Li Xinzheng, Li Anchun. Beijing: Publishing House of Electronics Industry, 2017. (in Chinese)
[13] Mison J, Hancock D, Dickinson S, et al. Algithm theetical basis document (ATBD) f ocean surface height[R]. Maryl: Goddard Space Flight Center Greenbelt(NASA), 2021.
[14] T Markus, T Neumann, A Martino, et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sensing of Environment, 190, 260-273(2017).
[15] Zapevalov A, Pokazeev K, Chaplina T. Simulation of the Sea Surface f Remote Sensing[M]. Cham, Switzerl: Springer, 2021.
[16] W H Zhang, S Li, Y Ma, et al. Photon-counting lidar simulation method based on three-dimensional sea surface. Journal of Infrared and Millimeter Waves, 39, 483-490(2020).
[17] B Nilsson, O B Andersen, H Ranndal, et al. Consolidating ICESat-2 ocean wave characteristics with CryoSat-2 during the CRYO2 ICE campaign. Remote Sensing, 14, 1300(2022).
[18] B W Klotz, A Neuenschwander, L A Magruder. High-resolution ocean wave and wind characteristics determined by the ICESat-2 land surface algorithm. Geophysical Research Letters, 47, e2019GL085907(2020).
[19] Hersbach H, Bell B, Berrisfd P, et al. ERA5 hourly data on single levels from 1979 to present[EBOL]. (20180614) [20211203]. https:cds.climate.copernicus.eucdsapp#!datasetreanalysisera5singlelevelstab=overview.
[20] He Y J, Qiu Z F, Zhang B, et al. Wave Observation Technology[M]. Beijing: Science Press, 2015. (in Chinese)
[21] X Zhou, J Yang, S Li. Model of sea surface echos from spaceborne single photon lidar. Acta Optica Sinica, 41, 1928002(2021).