• Journal of Inorganic Materials
  • Vol. 39, Issue 8, 903 (2024)
Xin MIAO1, Shiqiang YAN1, Jindou WEI1, Chao WU1..., Wenhao FAN2 and Shaoping CHEN1,*|Show fewer author(s)
Author Affiliations
  • 11. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • 22. College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
  • show less
    DOI: 10.15541/jim20240057 Cite this Article
    Xin MIAO, Shiqiang YAN, Jindou WEI, Chao WU, Wenhao FAN, Shaoping CHEN. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability[J]. Journal of Inorganic Materials, 2024, 39(8): 903 Copy Citation Text show less
    Microstructure and composition of Te0.985Sb0.015 precursor powder
    1. Microstructure and composition of Te0.985Sb0.015 precursor powder
    Composition and lattice parameters of NixTe samples
    2. Composition and lattice parameters of NixTe samples
    (a) Thicknesses of the interface reaction layers (IRLs) at the Te0.985Sb0.015/NixTe interfaces, and (b) formation Gibbs free energies in molar (ΔrGT) of the interface products at the Te0.985Sb0.015/NixTe interfaces
    3. (a) Thicknesses of the interface reaction layers (IRLs) at the Te0.985Sb0.015/NixTe interfaces, and (b) formation Gibbs free energies in molar (ΔrGT) of the interface products at the Te0.985Sb0.015/NixTe interfaces
    Diagram of the growth of the interface reaction layer (IRL) at Te/NiTe2-m interface
    4. Diagram of the growth of the interface reaction layer (IRL) at Te/NiTe2-m interface
    Microstructures of Te0.985Sb0.015/NixTe interfaces after aging at 473 K for 6 and 12 d
    5. Microstructures of Te0.985Sb0.015/NixTe interfaces after aging at 473 K for 6 and 12 d
    Performance of NixTe/Te0.985Sb0.015/NixTe (x=0.500, 0.563, 0.667) single-leg devices
    6. Performance of NixTe/Te0.985Sb0.015/NixTe (x=0.500, 0.563, 0.667) single-leg devices
    Fracture microstructure and element distribution of sintered Te0.985Sb0.015
    S1. Fracture microstructure and element distribution of sintered Te0.985Sb0.015
    Thermoelectric performance of Te0.985Sb0.015 in the direction parallel to the sintering pressure
    S2. Thermoelectric performance of Te0.985Sb0.015 in the direction parallel to the sintering pressure
    Electrical performance of NixTe samples
    S3. Electrical performance of NixTe samples
    Microstructures and element distributions of sintered Te0.985Sb0.015/NixTe interfaces
    S4. Microstructures and element distributions of sintered Te0.985Sb0.015/NixTe interfaces
    Backscatter SEM image of sintered Te0.985Sb0.015/Ni interface
    S5. Backscatter SEM image of sintered Te0.985Sb0.015/Ni interface
    Performance of Ni0.5Te/Te0.985Sb0.015/Ni0.5Te single-leg devices under a temperature difference of 180 K (Hot end: 473 K, Cold end: 293 K)
    S6. Performance of Ni0.5Te/Te0.985Sb0.015/Ni0.5Te single-leg devices under a temperature difference of 180 K (Hot end: 473 K, Cold end: 293 K)
    Aging-time dependent performance of Ni0.5Te/Te0.985Sb0.015/Ni0.5Te single-leg devices under a temperature difference of 180 K (Hot end: 473 K, Cold end: 293 K)
    S7. Aging-time dependent performance of Ni0.5Te/Te0.985Sb0.015/Ni0.5Te single-leg devices under a temperature difference of 180 K (Hot end: 473 K, Cold end: 293 K)
    Total migration of atomsx=0.500 x=0.563 x=0.667 x=0.833 x=0.908 Te0.985Sb0.015/Ni
    CN·l/(mol·cm-2)00.12970.21340.28100.31540.5653
    Table 1. Total migration of atoms (CN·l) at Te0.985Sb0.015/NixTe interface
    Phase lableFormula inreference Formulaused here Temperature/KST/(J·mol-1·K-1) HT/(kJ·mol-1) GT/(kJ·mol-1) Ref.
    δ(-NiTe2-x,52.2%-66.7%(in atom) Te)Ni0.476Te0.524Ni0.908Te298.1576.393-51.908-74.685[40]
    600.00112.729-36.120-103.758
    700.00121.397-30.494-115.472
    Ni0.4Te0.6Ni0.667Te298.1566.917-47.833-67.785[40]
    600.0098.732-33.987-93.226
    700.00106.415-29.000-103.491
    Ni0.333Te0.667Ni0.5Te298.1560.135-43.778-61.707[40]
    600.0088.253-31.552-84.504
    700.0095.001-27.172-93.673
    TeTeTe298.1549.4970.000-14.757[41]
    600.0069.5378.766-32.956
    700.0074.69412.114-40.171
    NiNiNi298.1529.8740.000-8.907[41]
    600.0050.4199.008-21.243
    700.0055.54612.326-26.557
    Table 1. Thermodynamic data. Values of entropy (ST), enthalpy (HT), and Gibbs free energy (GT) at 298.15, 600.00 and 700.00 K, respectively
    Chemical reaction equationTemperature/KΔrST/(J·mol-1·K-1) ΔrHT/(kJ·mol-1) ΔrGT/(kJ·mol-1)
    0.25Te+0.75Ni0.667Te→Ni0.5Te298.15-2.427-7.903-7.180
    600.00-3.180-8.253-6.345
    700.00-3.484-8.451-6.012
    0.449Te+0.551Ni0.908Te→Ni0.5Te298.15-4.182-15.177-13.930
    600.00-5.083-15.586-12.536
    700.00-5.426-15.809-12.010
    1.5Ni+Te→Ni1.5Te298.155.692-57.500-59.197
    600.005.969-57.318-60.899
    700.008.110-56.023-61.700
    Table 2. Molar formation Gibbs free energies (ΔrGT) of interface products at 298.15, 600.00 and 700.00 K, respectively
    ItemNiTe2(Ni0.5Te) NiTe1.776(Ni0.563Te) NiTe1.5(Ni0.667Te) NiTe1.2(Ni0.833Te) NiTe1.1(Ni0.908Te) NiTeNiTe0.667(Ni1.5Te)
    M/(g·mol-1)313.893285.311250.093211.813199.05358.693127.600143.802
    n2.0001.7761.5001.2001.1000.000-0.667
    ρ/(g·cm-3)7.7017.5657.3637.0866.9768.910-8.126
    Table 3. Density (ρ), molar mass (M) and moles of the bound Te per mole substance
    Xin MIAO, Shiqiang YAN, Jindou WEI, Chao WU, Wenhao FAN, Shaoping CHEN. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability[J]. Journal of Inorganic Materials, 2024, 39(8): 903
    Download Citation