[1] Liu B, Yu Y, Jiang S. Review of advances in LiDAR detection and 3D imaging[J]. Opto-Electronic Engineering, 46, 190167(2019).
[2] Zhao Y Y, Zhou P F, Xie T P et al. Development status and trends of single-photon LiDAR technology[J]. Opto-Electronic Engineering, 51, 240037(2024).
[3] He R, Zhu L, Dong J F et al. Modeling and simulation of LiDAR based on single-photon avalanche diode[J]. Laser & Optoelectronics Progress, 61, 1028003(2024).
[4] Sawruk N, Burns P, Edwards R et al. Flight lasers transmitter development for NASA ice topography icesat-2 space mission[C], 1837-1840(2018).
[5] Markus T, Neumann T, Martino A et al. The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation[J]. Remote Sensing of Environment, 190, 260-273(2017).
[6] Sang J Z, Bennett J C. Achievable debris orbit prediction accuracy using laser ranging data from a single station[J]. Advances in Space Research, 54, 119-124(2014).
[7] Sang J Z, Bennett J C, Smith C. Experimental results of debris orbit predictions using sparse tracking data from Mt. Stromlo[J]. Acta Astronautica, 102, 258-268(2014).
[8] Chen Z, Liu B, Guo G M et al. Single photon imaging with multi-scale time resolution[J]. Optics Express, 30, 15895-15904(2022).
[9] Wang L, Liu B, Wu C et al. Analysis and test of LiDAR characteristics based on diffraction lens receiving[J]. Opto-Electronic Engineering, 51, 240032(2024).
[10] Yang Y F, Yang K L. LiDAR detection and imaging algorithm in foggy environments[J]. Acta Optica Sinica, 45, 0611001(2025).
[11] Zhang H F, Liu J, An Q C et al. Single-photon counting 3D imaging-based target attitude acquisition[J]. Laser & Optoelectronics Progress, 60, 0811031(2023).
[12] Degnan J. Optimization of the correlation range receiver parameters in SLR2000[EB/OL]. https://cddis.nasa.gov/lw13/docs/papers/adv_degnan_2m.pdf
[13] Ricklefs R L, Shelus P J. Poisson filtering of laser ranging data[EB/OL]. https://ntrs.nasa.gov/citations/19940011120
[14] Luck J, Moore C, Greene B. Autonomous laser ranging results from mount Stromlo[EB/OL]. https://ilrs.cddis.eosdis.nasa.gov/lw12/docs/Luck_et_al_MateraAutoPaper.pdf
[15] Zhang J S, Kerekes J, Csatho B et al. A clustering approach for detection of ground in micropulse photon-counting LiDAR altimeter data[C], 177-180(2014).
[16] Xue L, Zhu Z K, Wu W T et al. Simulated analysis of processing satellite laser ranging data using neural networks trained by DeepLabCut[C], 468-472(2019).
[17] Liu T, Chen H, Shen M et al. Effective echo extraction for space debris laser ranging using randomized Hough transform[J]. Chinese Journal of Lasers, 43, 0408002(2016).
[18] Liu X L, Qiang J, Huang G H et al. Velocity-based sparse photon clustering for space debris ranging by single-photon LiDAR[J]. IEEE Geoscience and Remote Sensing Letters, 21, 6500805(2024).
[19] Liu B, Jiang Y, Wang R et al. Technical progress and system evaluation of all-time single photon lidar[J]. Infrared and Laser Engineering, 52, 20220748(2023).
[20] Chen Z, Liu B, Guo G M. Adaptive single photon detection under fluctuating background noise[J]. Optics Express, 28, 30199-30209(2020).