[1] J DU, D XIE, Q ZHANG et al. A robust neuromorphic vision sensor with optical control of ferroelectric switching. Nano Energy, 106439(2021).
[2] Z DUAN, C HU, W LIU et al. An all-MXene-based flexible, seamless system with integrated wireless charging coil, micro-supercapacitor, and photodetector. Advanced Materials Technologies, 2300157(2023).
[3] L GU, S PODDAR, Y LIN et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 278(2020).
[4] L GU, M M TAVAKOLI, D ZHANG et al. 3D arrays of 1024- pixel image sensors based on lead halide perovskite nanowires. Advanced Materials, 9713(2016).
[5] M HOSSAIN, G S KUMAR, S N B PRABHAVA et al. Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications. ACS Nano, 4727(2018).
[6] L D LI, L L GU, Z LOU et al. ZnO quantum dot decorated Zn2SnO4 nanowire heterojunction photodetectors with drastic performance enhancement and flexible ultraviolet image sensors. ACS Nano, 4067(2017).
[7] L LI, S YE, J QU et al. Recent advances in perovskite photodetectors for image sensing. Small, e2005606(2021).
[8] Q LI, DE GROEP J VAN, Y WANG et al. Transparent multispectral photodetectors mimicking the human visual system. Nature Communications, 4982(2019).
[9] M B LIEN, C H LIU, I Y CHUN et al. Ranging and light field imaging with transparent photodetectors. Nature Photonics, 143(2020).
[10] L LI, Z LOU, G SHEN. Flexible broadband image sensors with SnS quantum dots/Zn2SnO4 nanowires hybrid nanostructures. Advanced Functional Materials, 1705389(2018).
[11] H LI, Z DONG, Y ZHANG et al. Recent progress and strategies in photodetectors based on 2D inorganic/organic heterostructures, 012001(2020).
[12] L LI, C HU, G SHEN. Low-dimensional nanostructure based flexible photodetectors: device configuration, functional design, integration, and applications. Accounts of Materials Research, 954(2021).
[13] L LV, W DANG, X X WU et al. Flexible short-wave infrared image sensors enabled by high-performance polymeric photodetectors. Macromolecules, 10636(2020).
[14] L LI, D CHEN, G SHEN. All-Ti3C2Tx MXene based flexible on- chip microsupercapacitor array. Chemical Research in Chinese Universities, 694(2020).
[15] P WANG, S LIU, W LUO et al. Arrayed van der Waals broadband detectors for dual-band detection. Advanced Materials, 1604439(2017).
[16] L LI, X FU, S CHEN et al. Hydrophobic and stable MXene-polymer pressure sensors for wearable electronics. ACS Applied Materials Interfaces, 15362(2020).
[17] B SHI, L LI, A CHEN et al. Continuous fabrication of Ti3C2Tx MXene-based braided coaxial zinc-ion hybrid supercapacitors with improved performance. Nanomicro Letter, 34(2021).
[18] X XU, L LI, W LIU et al. Thermally chargeable supercapacitor with 3D Ti3C2Tx MXene hollow sphere based freestanding electrodes. Advanced Materials Interfaces, 2201165(2022).
[19] H QING, W CHENXU, Z SHUANG et al. Progress in structural tailoring and properties of ternary layered materials. Journal of Inorganic Materials, 845(2023).
[20] L LI, W LIU, K JIANG et al. In-situ annealed Ti3C2Tx MXene based all-solid-state flexible Zn-ion hybrid micro supercapacitor array with enhanced stability. Nanomicro Letter, 100(2021).
[21] W LIU, L LI, G SHEN. A Ti3C2Tx MXene cathode and redox-active electrolyte based flexible Zn-ion microsupercapacitor for integrated pressure sensing application. Nanoscale, 2624(2023).
[22] Z DU, W LIU, J LIU et al. A thermally chargeable supercapacitor based on the g-C3N4-Doped PAMPS/PAA hydrogel solid electrolyte and 2D MOF@Ti3C2Tx MXene heterostructure composite electrode. Advanced Materials Interfaces(2023). https://doi.org/10.1002/admi.202300266
[23] W LIU, L LI, C HU et al. Intercalation of small organic molecules into Ti3C2Tx mxene cathodes for flexible high-volume-capacitance Zn-ion microsupercapacitor. Advanced Materials Technologies, 2200158(2022).
[24] B SHI, L CHEN, T C JEN et al. Vertical arrangement of Ti2CTx MXene nanosheets on carbon fibers for high-performance and flexible Zn-ion supercapacitors. ACS Applied Nano Materials, 315(2022).
[25] T S MATHIS, K MALESKI, A GOAD et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano, 6420(2021).
[26] H XU, A REN, J WU et al. Recent advances in 2D MXenes for photodetection. Advanced Functional Materials, 2000907(2020).
[27] J L HART, K HANTANASIRISAKUL, A C LANG et al. Control of MXenes' electronic properties through termination and intercalation. Nature Communications, 522(2019).
[28] K HANTANASIRISAKUL, Y GOGOTSI. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Advanced Materials, e1804779(2018).
[29] J JEON, H CHOI, S CHOI et al. Transition-metal-carbide (Mo2C) multiperiod gratings for realization of high-sensitivity and broad- spectrum photodetection. Advanced Functional Materials, 1905384(2019).
[30] X JIANG, S LIU, W LIANG et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser & Photonics Reviews, 1700229(2018).
[31] D B VELUSAMY, J K EL-DEMELLAWI, A M EL-ZOHRY et al. MXenes for plasmonic photodetection. Advanced Materials, e1807658(2019).
[32] C HU, H CHEN, L LI et al. Ti3C2Tx MXene-RAN van der Waals heterostructure-based flexible transparent NIR photodetector array for 1024 pixel image sensing application. Advanced Materials Technologies, 2101639(2022).
[33] C HU, Z WEI, L LI et al. Strategy toward semiconducting Ti3C2Tx-MXene: phenylsulfonic acid groups modified Ti3C2Tx as photosensitive material for flexible visual sensory-neuromorphic system. Advanced Functional Materials(2023). https://doi.org/10.1002/adfm.202302188
[34] S CHERTOPALOV, V N MOCHALIN. Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films. ACS Nano, 6109(2018).
[35] J CHEN, Z LI, F NI et al. Bio-inspired transparent MXene electrodes for flexible UV photodetectors. Materilas Horizons, 1828(2020).
[36] Y Y LIU, H XIAO, W A GODDARD. Schottky-barrier-free contacts with two-dimensional semiconductors by surface- engineered MXenes. Journal of the American Chemical Society, 15853(2016).
[37] K MONTAZERI, M CURRIE, L VERGER et al. Beyond gold: spin-coated Ti3C2-based MXene photodetectors. Advanced Materials, e1903271(2019).
[38] W SONG, J CHEN, Z LI et al. Self-powered MXene/GaN van der Waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs. Advanced Materials, e2101059(2021).
[39] Z KANG, Y MA, X TAN et al. MXene-silicon van der Waals heterostructures for high-speed self-driven photodetectors. Advanced Electronic Materials, 1700165(2017).
[40] C HU, L LI, G SHEN. Flexible Transparent near-infrared photodetector based on 2D Ti3C2 MXene-Te van der Waal heterostructures. Chinese Journal of Chemistry, 2141(2021).
[41] R X XU, L L MIN, Z M QI et al. Perovskite transparent conducting oxide for the design of a transparent, flexible, and self- powered perovskite photodetector. ACS Applied Materials Interfaces, 16462(2020).
[42] W DENG, H HUANG, H JIN et al. All-sprayed-processable, large- area, and flexible perovskite/mxene-based photodetector arrays for photocommunication. Advanced Optical Materials, 1801521(2019).
[43] H ABDEL-KHALEK, M I EL-SAMAHI, SALAM M A EL et al. Fabrication and performance evaluation of ultraviolet photodetector based on organic/inorganic heterojunction. Current Applied Physics, 1496(2018).
[44] C HU, Z DU, Z WEI et al. Functionalized Ti3C2Tx MXene with layer-dependent band gap for flexible NIR photodetectors. Applied Physics Reviews, 021402(2023).
[45] F HUANG, J LI, Z XU et al. A bilayer 2D-WS2/organic-based heterojunction for high-performance photodetectors. Nanomaterials, 1312(2019).
[46] S PYO, W KIM, H I JUNG et al. Heterogeneous integration of carbon-nanotube-graphene for high-performance, flexible, and transparent photodetectors. Small, 1700918(2017).
[47] D DUMCENCO, D OVCHINNIKOV, K MARINOV et al. Large- area epitaxial monolayer MoS2. ACS Nano, 4611(2015).
[48] J J TAO, J JIANG, S N ZHAO et al. Fabrication of 1D Te/2D ReS2 mixed-dimensional van der Waals p-n heterojunction for high- performance phototransistor. ACS Nano, 3241(2021).
[49] K THAKAR, B MUKHERJEE, S GROVER et al. Multilayer ReS2 photodetectors with gate tunability for high responsivity and high-speed applications. ACS Applied Materials Interfaces, 36512(2018).
[50] Y Y NOH, D Y KIM, K YASE. Highly sensitive thin-film organic phototransistors: effect of wavelength of light source on device performance. Journal of Applied Physics, 074505(2005).
[51] E LI, C GAO, R YU et al. MXene based saturation organic vertical photoelectric transistors with low subthreshold swing. Nature Communications, 2898(2022).
[52] M MARIANO, O MASHTALIR, F Q ANTONIO et al. Solution- processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale, 16371(2016).
[53] J YOON, GY BAE, S YOO et al. Deep-ultraviolet sensing characteristics of transparent and flexible IGZO thin film transistors. Journal of Alloys and Compounds, 152788(2020).
[54] S H KIM, G W BAEK, J YOON et al. A bioinspired stretchable sensory-neuromorphic system. Advanced Materials, e2104690(2021).
[55] W RAN, L WANG, S ZHAO et al. An integrated flexible all-nanowire infrared sensing system with record photosensitivity. Advanced Materials, e1908419(2020).
[56] S WANG, X CHEN, X HUANG et al. Neuromorphic engineering for hardware computational acceleration and biomimetic perception motion integration. Advanced Intelligent Systems, 2000124(2020).
[57] Z Y HU, Y L ZHANG, C PAN et al. Miniature optoelectronic compound eye camera. Nature Communications, 5634(2022).
[58] J TANG, F YUAN, X SHEN et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Advanced Materials, e1902761(2019).
[59] Q B ZHU, B LI, D D YANG et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nature Communications, 1798(2021).