• Chinese Journal of Lasers
  • Vol. 51, Issue 15, 1507402 (2024)
Mo Yang1,*, Shangjun Lin2, Jie Chen2, and Fangrong Hu2,**
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, North China Institute of Aerospace Engineering, Langfang 065000, Hebei , China
  • 2School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, Guangxi , China
  • show less
    DOI: 10.3788/CJL240462 Cite this Article Set citation alerts
    Mo Yang, Shangjun Lin, Jie Chen, Fangrong Hu. Detection of miRNA‑92a Concentration Using Terahertz Metasurface Sensors Based on Hybrid Chain Reaction[J]. Chinese Journal of Lasers, 2024, 51(15): 1507402 Copy Citation Text show less
    References

    [1] Xia C F, Dong X S, Li H et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chinese Medical Journal, 135, 584-590(2022).

    [2] Arnold M, Sierra M S, Laversanne M et al. Global patterns and trends in colorectal cancer incidence and mortality[J]. Gut, 66, 683-691(2017).

    [3] Smyth E C, Verheij M, Allum W et al. Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Annals of Oncology, 27, v(2016).

    [4] Meng X D, Wang H J, Yang M H et al. Target-cell-specific bioorthogonal and endogenous ATP control of signal amplification for intracellular microRNA imaging[J]. Analytical Chemistry, 93, 1693-1701(2021).

    [5] de Miguel Pérez D, Rodriguez Martínez A, Ortigosa Palomo A et al. Extracellular vesicle-miRNAs as liquid biopsy biomarkers for disease identification and prognosis in metastatic colorectal cancer patients[J]. Scientific Reports, 10, 3974(2020).

    [6] Parmar S, Gharat S A, Tagirasa R et al. Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity[J]. PLoS One, 15, e0230958(2020).

    [7] Jian X Y, He H, Zhu J H et al. Hsa_circ_001680 affects the proliferation and migration of CRC and mediates its chemoresistance by regulating BMI1 through miR-340[J]. Molecular Cancer, 19, 20(2020).

    [8] Afzalinia A, Mirzaee M. Ultrasensitive fluorescent miRNA biosensor based on a “sandwich” oligonucleotide hybridization and fluorescence resonance energy transfer process using an ln(III)-MOF and Ag nanoparticles for early cancer diagnosis: application of central composite design[J]. ACS Applied Materials & Interfaces, 12, 16076-16087(2020).

    [9] Zhang Z W, Zhu Z, Yuan M H et al. Predict sample’s line positions of absorption peaks in terahertz band with the forced radiation intensity of molecular electric dipoles[J]. Optics Communications, 458, 124848(2020).

    [10] Vafapour Z, Keshavarz A, Ghahraloud H. The potential of terahertz sensing for cancer diagnosis[J]. Heliyon, 6, e05623(2020).

    [11] Lou J, Yang R S, Liang J G et al. Dual-sensitivity terahertz metasensor based on lattice-toroidal-coupled resonance[J]. Advanced Photonics Research, 2, 2000175(2021).

    [12] Cheng R J, Xu L, Yu X et al. High-sensitivity biosensor for identification of protein based on terahertz Fano resonance metasurfaces[J]. Optics Communications, 473, 125850(2020).

    [13] Tseng M L, Hsiao H H, Chu C H et al. Metalenses: advances and applications[J]. Advanced Optical Materials, 6, 1800554(2018).

    [14] Beruete M, Jáuregui-López I. Terahertz sensing based on metasurfaces[J]. Advanced Optical Materials, 8, 1900721(2020).

    [15] Zhou R Y, Wang C, Huang Y X et al. Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures[J]. Biosensors & Bioelectronics, 188, 113336(2021).

    [16] Ahmadivand A, Gerislioglu B, Ramezani Z et al. Functionalized terahertz plasmonic metasensors: femtomolar-level detection of SARS-CoV-2 spike proteins[J]. Biosensors & Bioelectronics, 177, 112971(2021).

    [17] Zhang C B, Xue T J, Zhang J et al. Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells[J]. Nanophotonics, 11, 101-109(2021).

    [18] Jiao Y N, Lou J, Ma Z F et al. Photoactive terahertz metasurfaces for ultrafast switchable sensing of colorectal cells[J]. Materials Horizons, 9, 2984-2992(2022).

    [19] Cheng D, Zhang B, Liu G et al. Terahertz ultrasensitive biosensing metamaterial and metasurface based on spoof surface plasmon polaritons[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 33, e2529(2020).

    [20] Dirks R M, Pierce N A. Triggered amplification by hybridization chain reaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 101, 15275-15278(2004).

    [21] Niu S Y, Jiang Y, Zhang S S. Fluorescence detection for DNA using hybridization chain reaction with enzyme-amplification[J]. Chemical Communications, 46, 3089-3091(2010).

    [22] Park C R, Park S J, Lee W G et al. Biosensors using hybridization chain reaction-design and signal amplification strategies of hybridization chain reaction[J]. Biotechnology and Bioprocess Engineering, 23, 355-370(2018).

    [23] Xiao L, Xu L, Gao C et al. A MoS2 nanosheet-based fluorescence biosensor for simple and quantitative analysis of DNA methylation[J]. Sensors, 16, 1561(2016).

    [24] Du Y C, Zhu L N, Kong D M. Label-free thioflavin T/G-quadruplex-based real-time strand displacement amplification for biosensing applications[J]. Biosensors & Bioelectronics, 86, 811-817(2016).

    [25] Ge R, Dai H J, Zhang S M et al. A collection of RPA-based photoelectrochemical assays for the portable detection of multiple pathogens[J]. Analytical Chemistry, 95, 7379-7386(2023).

    [26] Jeong J, Kim H, Lee D J et al. RCA-based biosensor for electrical and colorimetric detection of pathogen DNA[J]. Nanoscale Research Letters, 11, 242(2016).

    [27] Wang F T, Cai R, Tan W H. Self-powered biosensor for a highly efficient and ultrasensitive dual-biomarker assay[J]. Analytical Chemistry, 95, 6046-6052(2023).

    [28] Qiu X, Dong J Y, Dai Q S et al. Functionalized nanopores based on hybridization chain reaction: fabrication and microRNA sensing[J]. Biosensors & Bioelectronics, 240, 115594(2023).

    [29] Zhao Y, Lu C T, Zhao X E et al. A T-rich nucleic acid-enhanced electrochemical platform based on electroactive silver nanoclusters for miRNA detection[J]. Biosensors and Bioelectronics, 208, 114215(2022).

    [30] Yang M W, Chen D J, Hu J et al. The application of coffee-ring effect in analytical chemistry[J]. TrAC Trends in Analytical Chemistry, 157, 116752(2022).

    [31] Fan Y, Shi S Y, Ma J S et al. A paper-based electrochemical immunosensor with reduced graphene oxide/thionine/gold nanoparticles nanocomposites modification for the detection of cancer antigen 125[J]. Biosensors & Bioelectronics, 135, 1-7(2019).

    Mo Yang, Shangjun Lin, Jie Chen, Fangrong Hu. Detection of miRNA‑92a Concentration Using Terahertz Metasurface Sensors Based on Hybrid Chain Reaction[J]. Chinese Journal of Lasers, 2024, 51(15): 1507402
    Download Citation