• Journal of Inorganic Materials
  • Vol. 39, Issue 2, 195 (2023)
Shungui DENG1,2 and Chuanfang ZHANG1,*
Author Affiliations
  • 11. College of Materials Science & Engineering, Sichuan University, Chengdu 610065, China
  • 22. Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
  • show less
    DOI: 10.15541/jim20230437 Cite this Article
    Shungui DENG, Chuanfang ZHANG. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices[J]. Journal of Inorganic Materials, 2023, 39(2): 195 Copy Citation Text show less
    References

    [1] N LI, J H PENG, W J ONG et al. Mxenes: an emerging platform for wearable electronics and looking beyond. Matter, 377(2021).

    [2] S ABDOLHOSSEINZADEH, C F ZHANG, R SCHNEIDER et al. A universal approach for room-temperature printing and coating of 2d materials. Advanced Materials, 2103660(2022).

    [3] X K CAI, Y T LUO, B LIU et al. Preparation of 2d material dispersions and their applications. Chemical Society Reviews, 6224(2018).

    [4] F TORRISI, T HASAN, W P WU et al. Inkjet-printed graphene electronics. ACS Nano, 2992(2012).

    [5] Y Z ZHANG, Y WANG, T CHENG et al. Printed supercapacitors: Materials, printing and applications. Chemical Society Reviews, 3229(2019).

    [6] E B SECOR, B Y AHN, T Z GAO et al. Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Advanced Materials, 6683(2015).

    [7] J T LI, M M NAIINI, S VAZIRI et al. Inkjet printing of MoS2. Advanced Functional Materials, 6524(2014).

    [8] H Y JUN, S O RYU, S H KIM et al. Inkjet printing of few-layer enriched black phosphorus nanosheets for electronic devices. Advanced Electronic Materials, 2100577(2021).

    [9] S UZUN, M SCHELLING, K HANTANASIRISAKUL et al. Additive-free aqueous mxene inks for thermal inkjet printing on textiles. Small, 2006376(2021).

    [10] Z WANG, X W LIANG, T ZHAO et al. Facile synthesis of monodisperse silver nanoparticles for screen printing conductive inks. Journal of Materials Science-Materials in Electronics, 16939(2017).

    [11] F X LIU, X B QIU, J F XU et al. High conductivity and transparency of graphene-based conductive ink: prepared from a multi-component synergistic stabilization method. Progress in Organic Coatings, 125(2019).

    [12] X K LI, M J LI, L ZONG et al. Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible conductive devices. Advanced Functional Materials, 1804197(2018).

    [13] L H ZHAO, C Y HONG, C H WANG et al. Enhancement of the adhesion strength of water-based ink binder based on waterborne polyurethane. Progress in Organic Coatings, 107765(2023).

    [14] Z AGHAYAR, M MALAKI, Y Z ZHANG. MXene-based ink design for printed applications. Nanomaterials, 4346(2022).

    [15] C F ZHANG. Interfacial assembly of two-dimensional MXenes. Journal of Energy Chemistry, 417(2021).

    [16] M NAGUIB, O MASHTALIR, J CARLE et al. Two-dimensional transition metal carbides. ACS Nano, 1322(2012).

    [17] J COME, M NAGUIB, P ROZIER et al. A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode. Journal of the Electrochemical Society, 1368(2012).

    [18] C ZHANG, Y L MA, X T ZHANG et al. Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy & Environmental Materials, 29(2020).

    [19] S ABDOLHOSSEINZADEH, X T JIANG, H ZHANG et al. Perspectives on solution processing of two-dimensional MXenes. Materials Today, 214(2021).

    [20] Y Z ZHANG, Y WANG, Q JIANG et al. Mxene printing and patterned coating for device applications. Advanced Materials, 1908486(2020).

    [21] M ALHABEB, K MALESKI, B ANASORI et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 7633(2017).

    [22] S ABDOLHOSSEINZADEH, J HEIER, C F ZHANG. Printing and coating mxenes for electrochemical energy storage devices. Journal of Physics-Energy, 031004(2020).

    [23] S P SREENILAYAM, AHAD I UL, V NICOLOSI et al. MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Materials Today, 99(2021).

    [24] M NAGUIB, M KURTOGLU, V PRESSER et al. Two- dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 4248(2011).

    [25] M GHIDIU, M R LUKATSKAYA, M Q ZHAO et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature, 78(2014).

    [26] P URBANKOWSKI, B ANASORI, T MAKARYAN et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 11385(2016).

    [27] T F LI, L L YAO, Q L LIU et al. Fluorine-free synthesis of high- purity Ti3C2Tx (T=OH, O) via alkali treatment. Angewandte Chemie International Edition, 6115(2018).

    [28] M SHEN, W Y JIANG, K LIANG et al. One-pot green process to synthesize MXene with controllable surface terminations using molten salts. Angewandte Chemie International Edition, 27013(2021).

    [29] C F J ZHANG, S PINILLA, N MCEYOY et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chemistry of Materials, 4848(2017).

    [30] V NATU, J L HART, M SOKOL et al. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angewandte Chemie International Edition, 12655(2019).

    [31] X F ZHAO, A VASHISTH, E PREHN et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter, 513(2019).

    [32] Z M FAN, H Y HE, J X YU et al. Binder-free Ti3C2Tx MXene doughs with high redispersibility. ACS Materials Letters, 1598(2020).

    [33] S G DENG, T Z GUO, F NUEESCH et al. Stable MXene dough with ultrahigh solid fraction and excellent redispersibility toward efficient solution processing and industrialization. Advanced Science, 2300660(2023).

    [34] B AKUZUM, K MALESKI, B ANASORI et al. Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing mxenes. ACS Nano, 2685(2018).

    [35] A GLASSER, É CLOUTET, G HADZIIOANNOU et al. Tuning the rheology of conducting polymer inks for various deposition processes. Chemistry of Materials, 6936(2019).

    [36] H P LI, J J LIANG. Recent development of printed micro- supercapacitors: printable materials, printing technologies, and perspectives. Advanced Materials, 1805864(2020).

    [37] S ABDOLHOSSEINZADEH, R SCHNEIDER, A VERMA et al. Turning trash into treasure: additive free MXene sediment inks for screen-printed micro-supercapacitors. Advanced Materials, 2000716(2020).

    [38] C F ZHANG, L MCKEON, M P KREMER et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nature Communications, 1795(2019).

    [39] C F ZHANG, M P KREMER, A SERAL-ASCASO et al. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Advanced Functional Materials, 1705506(2018).

    [40] W J YANG, J YANG, J J BYUN et al. 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Advanced Materials, 1902725(2019).

    [41] Z Y WU, S R LIU, Z J HAO et al. MXene contact engineering for printed electronics. Advanced Science, 2207174(2023).

    [42] E LUOMA, M VALIMAKI, J OLLILA et al. Bio-based polymeric substrates for printed hybrid electronics. Polymers, 1863(2022).

    [43] C H LINGHU, S ZHANG, C J WANG et al. Transfer printing techniques for flexible and stretchable inorganic electronics. npj Flexible Electronics, 26(2018).

    [44] T CAREY, S CACOVICH, G DIVITINI et al. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nature Communications, 1202(2017).

    [45] J X MA, S H ZHENG, Y X CAO et al. Aqueous MXene/ph1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics. Advanced Energy Materials, 2100746(2021).

    [46] G H HU, J KANG, L W T NG et al. Functional inks and printing of two-dimensional materials. Chemical Society Reviews, 3265(2018).

    [47] M SAADI, A MAGUIRE, N T POTTACKAL et al. Direct ink writing: a 3D printing technology for diverse materials. Advanced Materials, 2108855(2022).

    [48] J AZADMANJIRI, T N REDDY, B KHEZRI et al. Prospective advances in MXene inks: screen printable sediments for flexible micro-supercapacitor applications. Journal of Materials Chemistry A, 4533(2022).

    [49] C F ZHANG, S N PARK, A SERAL-ASCASO et al. High capacity silicon anodes enabled by MXene viscous aqueous ink. Nature Communications, 849(2019).

    [50] H TANG, W L LI, L M PAN et al. A robust, freestanding MXene-sulfur conductive paper for long-lifetime Li-S batteries. Advanced Functional Materials, 1901907(2019).

    [51] H TANG, W L LI, L M PAN et al. In situ formed protective barrier enabled by sulfur@titanium carbide MXene ink for achieving high-capacity, long lifetime Li-S batteries. Advanced Science, 1800502(2018).

    [52] M J CHEN, L L LI, Z M DENG et al. Two-dimensional janus MXene inks for versatile functional coatings on arbitrary substrates. ACS Applied Materials & Interfaces, 4591(2023).

    [53] Y Z SHAO, L S WEI, X Y WU et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nature Communications, 3223(2022).

    [54] Y SONG, R Y TAY, J LI et al. 3D-printed epifluidic electronic skin for machine learning-powered multimodal health surveillance. Science Advances, 6492(2023).

    Shungui DENG, Chuanfang ZHANG. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices[J]. Journal of Inorganic Materials, 2023, 39(2): 195
    Download Citation