• Advanced Photonics Nexus
  • Vol. 3, Issue 5, 054001 (2024)
Zhiwei Guo†,*, Yang Xu, Shengyu Hu, Yuqian Wang..., Yong Sun* and Hong Chen*|Show fewer author(s)
Author Affiliations
  • Tongji University, School of Physics Science and Engineering, MOE, Key Laboratory of Advanced Micro-Structure Materials, Shanghai, China
  • show less
    DOI: 10.1117/1.APN.3.5.054001 Cite this Article Set citation alerts
    Zhiwei Guo, Yang Xu, Shengyu Hu, Yuqian Wang, Yong Sun, Hong Chen, "Metamaterial-enhanced magnetic resonance imaging: a review," Adv. Photon. Nexus 3, 054001 (2024) Copy Citation Text show less
    References

    [1] E. M. Purcell, H. C. Torrey, R. V. Pound. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev., 69, 37-38(1946).

    [2] F. Bloch. Nuclear induction. Phys. Rev., 70, 460-474(1946).

    [3] C. Boesch. Nobel prizes for nuclear magnetic resonance: 2003 and historical perspectives. J. Magn. Reson. Imaging, 20, 177-179(2004).

    [4] P. C. Lauterbur. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature, 242, 190-191(1973).

    [5] G. B. Frisoni et al. The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol., 6, 67-77(2010).

    [6] V. O. Puntmann et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol., 5, 1265-1273(2020).

    [7] M. D. Fox, M. E. Raichle. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci., 8, 700-711(2007).

    [8] U. Dannlowski et al. Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol. Psychiatry, 71, 286-293(2012).

    [9] Y. W. Jun, J. H. Lee, J. Cheon. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed. Engl., 47, 5122-5135(2008).

    [10] E. Terreno et al. Challenges for molecular magnetic resonance imaging. Chem. Rev., 110, 3019-3042(2010).

    [11] S. Martel et al. Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl. Phys. Lett., 90, 114105(2007).

    [12] A. P. Slobozhanyuk et al. Visualization of metasurface eigenmodes with magnetic resonance imaging. Phys. Rev. Appl., 16, L021002(2021).

    [13] W. R. Hendee. Physics and applications of medical imaging. Rev. Mod. Phys., 71, S444-S450(1999).

    [14] D. L. Bihan, H. Johansen-Berg. Diffusion MRI at 25: exploring brain tissue structure and function. NeuroImage, 61, 324-341(2012).

    [15] W. Wu, K. L. Miller. Image formation in diffusion MRI: a review of recent technical developments. J. Magn. Reson. Imaging, 46, 646-662(2017).

    [16] S. Eickhoff et al. High-resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex. Hum. Brain Mapp., 24, 206-215(2005).

    [17] J. D. Bodle et al. High-resolution magnetic resonance imaging: an emerging tool for evaluating intracranial arterial disease. Stroke, 44, 287-292(2013).

    [18] G. H. Glover. Overview of functional magnetic resonance imaging. Neurosurg. Clin. N. Am., 22, 133-139(2011).

    [19] P. A. Bandettini. Twenty years of functional MRI: the science and the stories. NeuroImage, 62, 575-588(2012).

    [20] C. K. Kuhl, F. Träber, H. H. Schild. Whole-body high-field-strength (3.0-T) MR imaging in clinical practice Part I. Technical considerations and clinical applications. Radiology, 246, 675-696(2008).

    [21] B. Gruber et al. RF coils: a practical guide for nonphysicists. J. Magn. Reson. Imaging, 48, 590-604(2018).

    [22] X. Yan, J. C. Gore, W. A. Grissom. Self-decoupled radiofrequency coils for magnetic resonance imaging. Nat. Commun., 9, 3481(2018).

    [23] D. J. Tyler et al. Magnetic resonance imaging with ultrashort TE (UTE) pulse sequences: technical considerations. J. Magn. Reson. Imaging, 25, 279-289(2007).

    [24] L. Knutsson et al. CEST, ASL, and magnetization transfer contrast: how similar pulse sequences detect different phenomena. Magn. Reson. Med., 80, 1320-1340(2018).

    [25] E. Van Reeth et al. Super-resolution in magnetic resonance imaging: a review. Concepts Magn. Reson. Part A, 40A, 306-325(2012).

    [26] E.-S. A. El-Dahshan et al. Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst. Appl., 41, 5526-5545(2014).

    [27] Y. D. Xiao et al. MRI contrast agents: classification and application [Review]. Int. J. Mol. Med., 38, 1319-1326(2016).

    [28] J. Wahsner et al. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem. Rev., 119, 957-1057(2019).

    [29] A. G. Webb. Dielectric materials in magnetic resonance. Concepts Magn. Reson. Part A, 38A, 148-184(2011).

    [30] Q. X. Yang et al. Reducing SAR and enhancing cerebral signal-to-noise ratio with high permittivity padding at 3 T. Magn. Reson. Med., 65, 358-362(2011).

    [31] S. A. Aussenhofer, A. G. Webb. High-permittivity solid ceramic resonators for high-field human MRI. NMR Biomed., 26, 1555-1561(2013).

    [32] A. Shchelokova et al. Ceramic resonators for targeted clinical magnetic resonance imaging of the breast. Nat. Commun., 11, 3840(2020).

    [33] J. B. Pendry et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech., 47, 2075-2084(1999).

    [34] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [35] R. Schmidt et al. Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging. Sci. Rep., 7, 1678(2017).

    [36] R. Schmidt, A. Webb. Metamaterial combining electric- and magnetic-dipole-based configurations for unique dual-band signal enhancement in ultrahigh-field magnetic resonance imaging. ACS Appl. Mater. Interfaces, 9, 34618-34624(2017).

    [37] A. V. Shchelokova et al. Volumetric wireless coil based on periodically coupled split-loop resonators for clinical wrist imaging. Magn. Reson. Med., 80, 1726-1737(2018).

    [38] K. Wu et al. Auxetics-inspired tunable metamaterials for magnetic resonance imaging. Adv. Mater., 34, 2109032(2022).

    [39] Z. Chi et al. Adaptive cylindrical wireless metasurfaces in clinical magnetic resonance imaging. Adv. Mater., 33, 2102469(2021).

    [40] X. Zhao et al. Intelligent metamaterials based on nonlinearity for magnetic resonance imaging. Adv. Mater., 31, 1905461(2019).

    [41] D. Schurig et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

    [42] T. Ergin et al. Three-dimensional invisibility cloak at optical wavelengths. Science, 328, 337-339(2010).

    [43] X. Liu et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett., 104, 207403(2010).

    [44] C. M. Watts, X. Liu, W. J. Padilla. Metamaterial electromagnetic wave absorbers. Adv. Mater., 24, OP98-OP120(2012).

    [45] F. Lemoult et al. Resonant metalenses for breaking the diffraction barrier. Phys. Rev. Lett., 104, 203901(2010).

    [46] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [47] C. L. Holloway et al. A discussion on the interpretation and characterization of metafilms/metasurfaces: the two-dimensional equivalent of metamaterials. Metamaterials, 3, 100-112(2009).

    [48] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [49] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [50] J. P. Marques, F. F. J. Simonis, A. G. Webb. Low-field MRI: an MR physics perspective. J. Magn. Reson. Imaging, 49, 1528-1542(2019).

    [51] W. J. Padilla, R. D. Averitt. Imaging with metamaterials. Nat. Rev. Phys., 4, 85-100(2022).

    [52] P. Danhier, B. Gallez. Electron paramagnetic resonance: a powerful tool to support magnetic resonance imaging research. Contrast Media Mol. Imaging, 10, 266-281(2015).

    [53] M. H. Levitt. Spin Dynamics: Basics of Nuclear Magnetic Resonance(2012).

    [54] M. A. Bernstein, K. F. King, X. J. Zhou. Handbook of MRI Pulse Sequences(2004).

    [55] R. Damadian. Tumor detection by nuclear magnetic resonance. Science, 171, 1151-1153(1971).

    [56] R. W. Brown et al. Magnetic Resonance Imaging: Physical Principles and Sequence Design(2014).

    [57] C. Westbrook, J. Talbot. MRI in Practice(2011).

    [58] C. E. Hayes et al. An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T. J. Magn. Reson., 63, 622-628(1985).

    [59] A. P. Slobozhanyuk et al. Enhancement of magnetic resonance imaging with metasurfaces. Adv. Mater., 28, 1832-1838(2016).

    [60] D. I. Hoult. The principle of reciprocity in signal strength calculations: a mathematical guide. Concepts Magn. Reson., 12, 173-187(2000).

    [61] M. H. Khan et al. Short- and long-term effects of 3.5–23.0 Tesla ultra-high magnetic fields on mice behaviour. Eur. Radiol., 32, 5596-5605(2022).

    [62] J. T. Rosenberg, S. C. Grant, D. Topgaard. Nonparametric 5D D-R(2) distribution imaging with single-shot EPI at 21.1 T: initial results for in vivo rat brain. J. Magn. Reson., 341, 107256(2022).

    [63] Q. X. Yang et al. Analysis of wave behavior in lossy dielectric samples at high field. Magn. Reson. Med., 47, 982-989(2002).

    [64] T. C. Choy. Effective Medium Theory: Principles and Applications(2016).

    [65] J. T. Vaughan et al. High frequency volume coils for clinical NMR imaging and spectroscopy. Magn. Reson. Med., 32, 206-218(1994).

    [66] M. C. K. Wiltshire et al. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science, 291, 849-851(2001).

    [67] M. C. K. Wiltshire et al. Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires. Opt. Express, 11, 709-715(2003).

    [68] M. J. Freire et al. On the applications of μr=1 metamaterial lenses for magnetic resonance imaging. J. Magn. Reson., 203, 81-90(2010). https://doi.org/10.1016/j.jmr.2009.12.005

    [69] M. A. Lopez et al. Nonlinear split-ring metamaterial slabs for magnetic resonance imaging. Appl. Phys. Lett., 98, 133508(2011).

    [70] M. C. K. Wiltshire. Radio frequency (RF) metamaterials. Phys. Status Solidi B, 244, 1227-1236(2007).

    [71] M. Allard, R. M. Henkelman. Using metamaterial yokes in NMR measurements. J. Magn. Reson., 182, 200-207(2006).

    [72] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [73] S. Xi et al. Experimental verification of reversed Cherenkov radiation in left-handed metamaterial. Phys. Rev. Lett., 103, 194801(2009).

    [74] E. J. Reed, M. Soljacic, J. D. Joannopoulos. Reversed Doppler effect in photonic crystals. Phys. Rev. Lett., 91, 133901(2003).

    [75] N. Fang, X. Zhang. Imaging properties of a metamaterial superlens. Appl. Phys. Lett., 82, 161-163(2003).

    [76] J. M. Algarin et al. Signal-to-noise ratio evaluation in resonant ring metamaterial lenses for MRI applications. New J. Phys., 13, 115006(2011).

    [77] J. M. Algarin et al. Analysis of the resolution of split-ring metamaterial lenses with application in parallel magnetic resonance imaging. Appl. Phys. Lett., 98, 014105(2011).

    [78] D. J. Larkman, R. G. Nunes. Parallel magnetic resonance imaging. Phys. Med. Biol., 52, R15-R55(2007).

    [79] E. Motovilova et al. Water-tunable highly sub-wavelength spiral resonator for magnetic field enhancement of MRI coils at 1.5 T. IEEE Access, 7, 90304-90315(2019).

    [80] E. Motovilova, S. Y. Huang. Hilbert curve-based metasurface to enhance sensitivity of radio frequency coils for 7-T MRI. IEEE Trans. Microw. Theory Tech., 67, 615-625(2019).

    [81] P. de Heer et al. Increasing signal homogeneity and image quality in abdominal imaging at 3 T with very high permittivity materials. Magn. Reson. Med., 68, 1317-1324(2012).

    [82] W. M. Brink, A. G. Webb. High permittivity pads reduce specific absorption rate, improve B1 homogeneity, and increase contrast‐to‐noise ratio for functional cardiac MRI at 3 T. Magn. Reson. Med., 71, 1632-1640(2013).

    [83] V. Vorobyev et al. An artificial dielectric slab for ultra high-field MRI: proof of concept. J. Magn. Reson., 320, 106835(2020).

    [84] V. Vorobyev et al. Improving B1+ homogeneity in abdominal imaging at 3 T with light, flexible, and compact metasurface. Magn. Reson. Med., 87, 496-508(2021). https://doi.org/10.1002/mrm.28946

    [85] E. Shamonina et al. Magnetoinductive waves in one, two, and three dimensions. J. Appl. Phys., 92, 6252-6261(2002).

    [86] L. Solymar et al. Rotational resonance of magnetoinductive waves: basic concept and application to nuclear magnetic resonance. J. Appl. Phys., 99, 123908(2006).

    [87] R. R. A. Syms et al. Flexible magnetoinductive ring MRI detector: design for invariant nearest-neighbour coupling. Metamaterials, 4, 1-14(2010).

    [88] C. R. Simovski et al. Wire metamaterials: physics and applications. Adv. Mater., 24, 4229-4248(2012).

    [89] X. Radu, D. Garray, C. Craeye. Toward a wire medium endoscope for MRI imaging. Metamaterials, 3, 90-99(2009).

    [90] M. C. K. Wiltshire et al. Experimental and theoretical study of magneto-inductive waves supported by one-dimensional arrays of “Swiss rolls”. J. Appl. Phys., 95, 4488-4493(2004).

    [91] R. R. A. Syms, E. Shamonina, L. Solymar. Magneto-inductive waveguide devices. IEE P-Microw. Antennas Propag., 153, 111-121(2006).

    [92] G. Shvets et al. Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays. Phys. Rev. Lett., 99, 053903(2007).

    [93] P. A. Belov et al. Enhancement of evanescent spatial harmonics inside media with extreme optical anisotropy. Opt. Lett., 34, 527-529(2009).

    [94] A. Poddubny et al. Hyperbolic metamaterials. Nat. Photonics, 7, 948-957(2013).

    [95] P. A. Belov et al. Strong spatial dispersion in wire media in the very large wavelength limit. Phys. Rev. B, 67, 113103(2003).

    [96] P. A. Belov, C. R. Simovski, P. Ikonen. Canalization of subwavelength images by electromagnetic crystals. Phys. Rev. B, 71, 193105(2005).

    [97] P. A. Belov, Y. Hao, S. Sudhakaran. Subwavelength microwave imaging using an array of parallel conducting wires as a lens. Phys. Rev. B, 73, 033108(2006).

    [98] X. Radu, A. Lapeyronnie, C. Craeye. Numerical and experimental analysis of a wire medium collimator for magnetic resonance imaging. Electromagnetics, 28, 531-543(2008).

    [99] A. P. Slobozhanyuk et al. An endoscope based on extremely anisotropic metamaterials for applications in magnetic resonance imaging. J. Commun. Technol. Electron., 59, 562-570(2014).

    [100] A. P. Slobozhanyuk et al. Experimental verification of enhancement of evanescent waves inside a wire medium. Appl. Phys. Lett., 103, 051118(2013).

    [101] M. Dubois et al. Kerker effect in ultrahigh-field magnetic resonance imaging. Phys. Rev. X, 8, 031083(2018).

    [102] T. Itoh, C. Caloz. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications(2005).

    [103] D. Erni et al. Highly adaptive RF excitation scheme based on conformal resonant CRLH metamaterial ring antennas for 7-Tesla traveling-wave magnetic resonance imaging, 554-558(2011).

    [104] H. Yang et al. Tailored RF magnetic field distribution along the bore of a 7-Tesla traveling-wave magnetic resonance imaging system, 468-471(2013).

    [105] C. Caloz, A. Sanada, T. Itoh. A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth. IEEE Trans. Microw. Theory Tech., 52, 980-992(2004).

    [106] M. Alibakhshikenari et al. High-gain metasurface in polyimide on-chip antenna based on CRLH-TL for sub-terahertz integrated circuits. Sci. Rep., 10, 4298(2020).

    [107] H. Lee, D. Ren, J. H. Choi. Dual-band and polarization-flexible CRLH substrate-integrated waveguide resonant antenna. IEEE Antennas Wirel. Propag. Lett., 17, 1469-1472(2018).

    [108] X. X. Wang et al. Unique Huygens-Fresnel electromagnetic transportation of chiral Dirac wavelet in topological photonic crystal. Nat. Commun., 14, 3040(2023).

    [109] Z. Guo et al. Anomalous broadband Floquet topological metasurface with pure site rings. Adv. Photonics Nexus, 2, 016006(2023).

    [110] V. Panda et al. A zeroth order resonant element for MRI transmission line RF coil, 1389-1390(2016).

    [111] T. K. Truong et al. Effects of static and radiofrequency magnetic field inhomogeneity in ultra-high field magnetic resonance imaging. Magn. Reson. Imaging, 24, 103-112(2006).

    [112] V. Panda et al. Metamaterial zeroth-order resonator RF coil for human head: preliminary design for 10.5 T MRI. IEEE J. Electromagn. RF Microw. Med. Biol., 3, 33-40(2019).

    [113] D. O. Brunner et al. Travelling-wave nuclear magnetic resonance. Nature, 457, 994-998(2009).

    [114] T. Herrmann et al. Metamaterial-based transmit and receive system for whole-body magnetic resonance imaging at ultra-high magnetic fields. PLoS One, 13, e0191719(2018).

    [115] Y. Zeng et al. Modal analysis method to describe weak nonlinear effects in metamaterials. Phys. Rev. B, 85, 125107(2012).

    [116] A. V. Shchelokova et al. Experimental investigation of a metasurface resonator for in vivo imaging at 1.5 T. J. Magn. Reson., 286, 78-81(2018).

    [117] E. Brui et al. Volumetric wireless coil for wrist MRI at 1.5 T as a practical alternative to Tx/Rx extremity coil: a comparative study. J. Magn. Reson., 339, 107209(2022).

    [118] E. A. Brui et al. Adjustable subwavelength metasurface-inspired resonator for magnetic resonance imaging. Phys. Status Solidi A, 215, 1700788(2018).

    [119] A. Hurshkainen et al. A novel metamaterial-inspired RF-coil for preclinical dual-nuclei MRI. Sci. Rep., 8, 9190(2018).

    [120] G. Duan et al. Boosting magnetic resonance imaging signal-to-noise ratio using magnetic metamaterials. Commun. Phys., 2, 35(2019).

    [121] P. Das et al. A thin metallo-dielectric stacked metamaterial as “add-on” for magnetic field enhancement in clinical MRI. J. Appl. Phys., 132, 114901(2022).

    [122] V. Puchnin et al. Metamaterial inspired wireless coil for clinical breast imaging. J. Magn. Reson., 322, 106877(2021).

    [123] S. Maslovski et al. Artificial magnetic materials based on the new magnetic particle: metasolenoid. Prog. Electromagn. Res., 54, 61-81(2005).

    [124] L. Nohava et al. Perspectives in wireless radio frequency coil development for magnetic resonance imaging. Front. Phys., 8, 11(2020).

    [125] V. M. Puchnin et al. Application of topological edge states in magnetic resonance imaging. Phys. Rev. Appl., 20, 024076(2023).

    [126] A. V. Shchelokova et al. Locally enhanced image quality with tunable hybrid metasurfaces. Phys. Rev. Appl., 9, 014020(2018).

    [127] E. I. Kretov, A. V. Shchelokova, A. P. Slobozhanyuk. Control of the magnetic near-field pattern inside MRI machine with tunable metasurface. Appl. Phys. Lett., 115, 061604(2019).

    [128] H. Wang et al. On‐demand field shaping for enhanced magnetic resonance imaging using an ultrathin reconfigurable metasurface. View, 2, 20200099(2021).

    [129] A. Jandaliyeva et al. Control of the near magnetic field pattern uniformity inside metamaterial-inspired volumetric resonators. Photonics Nanostruct., 48, 100989(2022).

    [130] E. I. Kretov, A. V. Shchelokova, A. P. Slobozhanyuk. Impact of wire metasurface eigenmode on the sensitivity enhancement of MRI system. Appl. Phys. Lett., 112, 033501(2018).

    [131] S. Zhang et al. Recent advances in nonlinear optics for bio-imaging applications. Opto-Electron. Adv., 3, 200003(2020).

    [132] E. Stoja et al. Improving magnetic resonance imaging with smart and thin metasurfaces. Sci. Rep., 11, 16179(2021).

    [133] S. Saha et al. A smart switching system to enable automatic tuning and detuning of metamaterial resonators in MRI scans. Sci. Rep., 10, 10042(2020).

    [134] I. Liberal, N. Engheta. Near-zero refractive index photonics. Nat. Photonics, 11, 149-158(2017).

    [135] Y. Chen et al. Experimental demonstration of the magnetic field concentration effect in circuit-based magnetic near-zero index media. Opt. Express, 28, 17064-17075(2020).

    [136] D. Lee et al. Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight, 2, 1(2022).

    [137] Y. Wang et al. Circuit-based magnetic hyperbolic cavities. Phys. Rev. Appl., 13, 044024(2020).

    [138] X. Yang et al. Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat. Photonics, 6, 450-454(2012).

    [139] Z. Guo, H. Jiang, H. Chen. Zero-index and hyperbolic metacavities: fundamentals and applications. J. Phys. D: Appl. Phys., 55, 083001(2021).

    [140] N. I. Zheludev, Y. S. Kivshar. From metamaterials to metadevices. Nat. Mater., 11, 917-924(2012).

    [141] T. J. Cui et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Sci. Appl., 3, e218(2014).

    [142] A. S. Lundervold, A. Lundervold. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys., 29, 102-127(2019).

    [143] M. Song et al. Multi-mode metamaterial-inspired resonator for near-field wireless power transfer. Appl. Phys. Lett., 117, 083501(2020).

    [144] Z. Guo et al. Level pinning of anti-PT-symmetric circuits for efficient wireless power transfer. Nat. Sci. Rev., 11, nwad172(2024).

    Zhiwei Guo, Yang Xu, Shengyu Hu, Yuqian Wang, Yong Sun, Hong Chen, "Metamaterial-enhanced magnetic resonance imaging: a review," Adv. Photon. Nexus 3, 054001 (2024)
    Download Citation