• Laser & Optoelectronics Progress
  • Vol. 62, Issue 8, 0800003 (2025)
Xinyu Lan, Guojun Weng**, Xin Li, Jianjun Li..., Jian Zhu and Junwu Zhao*|Show fewer author(s)
Author Affiliations
  • The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi , China
  • show less
    DOI: 10.3788/LOP241988 Cite this Article Set citation alerts
    Xinyu Lan, Guojun Weng, Xin Li, Jianjun Li, Jian Zhu, Junwu Zhao. Dark Field Light Scattering Imaging Coupled with Surface Enhanced Raman Scattering for Analysis and Detection Application[J]. Laser & Optoelectronics Progress, 2025, 62(8): 0800003 Copy Citation Text show less
    References

    [1] Pirovano G, Roberts S, Kossatz S et al. Optical imaging modalities: principles and applications in preclinical research and clinical settings[J]. Journal of Nuclear Medicine, 61, 1419-1427(2020).

    [2] Munck S, Cawthorne C, Escamilla-Ayala A et al. Challenges and advances in optical 3D mesoscale imaging[J]. Journal of Microscopy, 286, 201-219(2022).

    [3] Pan T, Lu D Y, Xin H B et al. Biophotonic probes for bio-detection and imaging[J]. Light: Science & Applications, 10, 124(2021).

    [4] Ye Z J, Liu H, Xiao L H. Recent advances of single molecule/particle imaging with optical microscopic methods[J]. Scientia Sinica Chimica, 49, 787-800(2019).

    [5] Fakhrullin R, Nigamatzyanova L, Fakhrullina G. Dark-field/hyperspectral microscopy for detecting nanoscale particles in environmental nanotoxicology research[J]. Science of the Total Environment, 772, 145478(2021).

    [6] Okatani T, Abe Y, Nakazawa T et al. Fabrication of silicon nanospheres placeable on a desired position for dielectric metamaterials in the visible region[J]. Optical Materials Express, 11, 189-197(2020).

    [7] Al-Zubeidi A, McCarthy L A, Rafiei-Miandashti A et al. Single-particle scattering spectroscopy: fundamentals and applications[J]. Nanophotonics, 10, 1621-1655(2021).

    [8] Zhou J, Gao P F, Zhang H Z et al. Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microRNA visual detection[J]. Nanoscale, 9, 4593-4600(2017).

    [9] Wang L, Hasanzadeh Kafshgari M, Meunier M. Optical properties and applications of plasmonic-metal nanoparticles[J]. Advanced Functional Materials, 30, 2005400(2020).

    [10] Kamarudheen R, Kumari G, Baldi A. Plasmon-driven synthesis of individual metal@semiconductor core@shell nanoparticles[J]. Nature Communications, 11, 3957(2020).

    [11] Pang J, Liu H L, Li J et al. Structural change of a single Ag nanoparticle observed by dark-field microspectroscopy[J]. ChemPhysChem, 19, 954-958(2018).

    [12] Zhang D D, Jiang N, Li P et al. Detection of monoamine oxidase B using dark-field light scattering imaging and colorimetry[J]. Chemical Communications, 58, 12329-12332(2022).

    [13] Wang K, Zhang F, Wei Y Q et al. In situ imaging of cellular reactive oxygen species and caspase-3 activity using a multifunctional theranostic probe for cancer diagnosis and therapy[J]. Analytical Chemistry, 93, 7870-7878(2021).

    [14] Qi F, Han Y M, Liu H et al. Localized surface plasmon resonance coupled single-particle galactose assay with dark-field optical microscopy[J]. Sensors and Actuators B: Chemical, 320, 128347(2020).

    [15] Xu S H, Yu X R, Chen Z H et al. Real-time visualization of the single-nanoparticle electrocatalytic hydrogen generation process and activity under dark field microscopy[J]. Analytical Chemistry, 92, 9016-9023(2020).

    [16] Liu F, Guo Y S, Hu Y H et al. Intracellular dark-field imaging of ATP and photothermal therapy using a colorimetric assay based on gold nanoparticle aggregation via tetrazine/trans-cyclooctene cycloaddition[J]. Analytical and Bioanalytical Chemistry, 411, 5845-5854(2019).

    [17] Wang J, Huang M, Li M X et al. The restructure of Au@Ag nanorods for cell imaging with dark-field microscope[J]. Talanta, 244, 123403(2022).

    [18] Liu Y, Wang N, He S H et al. Research progress on epidemic virus detection based on surface-enhanced Raman spectroscopy[J]. Chinese Journal of Lasers, 51, 0907006(2024).

    [19] Pirutin S K, Jia S C, Yusipovich A I et al. Vibrational spectroscopy as a tool for bioanalytical and biomonitoring studies[J]. International Journal of Molecular Sciences, 24, 6947(2023).

    [20] Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 26, 163-166(1974).

    [21] Le Ru E C, Blackie E, Meyer M et al. Surface enhanced Raman scattering enhancement factors: a comprehensive study[J]. The Journal of Physical Chemistry C, 111, 13794-13803(2007).

    [22] Vesga M J, McKechnie D, Laing S et al. Effect of glycine on aggregation of citrate-functionalised gold nanoparticles and SERS measurements[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 621, 126523(2021).

    [23] Cheng J X, Zhang Z Y, Zhang L F et al. Size-controllable colloidal Ag nano-aggregates with long-time SERS detection window for on-line high-throughput detection[J]. Talanta, 257, 124358(2023).

    [24] Liu Z Z, Liu X X, Sun Y S et al. Research progress on SERS immunochromatographic assay technology based on novel nanomaterials[J]. Acta Optica Sinica, 43, 1712003(2023).

    [25] Wang X T, Guo L. SERS activity of semiconductors: crystalline and amorphous nanomaterials[J]. Angewandte Chemie International Edition, 59, 4231-4239(2020).

    [26] Lee S, Lee S H, Paulson B et al. Enhancement of local surface plasmon resonance (LSPR) effect by biocompatible metal clustering based on ZnO nanorods in Raman measurements[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 204, 203-208(2018).

    [27] Cialla D, Pollok S, Steinbrücker C et al. SERS-based detection of biomolecules[J]. Nanophotonics, 3, 383-411(2014).

    [28] Wang Z L, Zong S F, Wang Y J et al. Screening and multiple detection of cancer exosomes using an SERS-based method[J]. Nanoscale, 10, 9053-9062(2018).

    [29] Qi G H, Zhang Y, Xu S P et al. Nucleus and mitochondria targeting theranostic plasmonic surface-enhanced Raman spectroscopy nanoprobes as a means for revealing molecular stress response differences in hyperthermia cell death between cancerous and normal cells[J]. Analytical Chemistry, 90, 13356-13364(2018).

    [30] Gao P F, Lei G, Huang C Z. Dark-field microscopy: recent advances in accurate analysis and emerging applications[J]. Analytical Chemistry, 93, 4707-4726(2021).

    [31] Cialla-May D, Bonifacio A, Bocklitz T et al. Biomedical SERS: the current state and future trends[J]. Chemical Society Reviews, 53, 8957-8979(2024).

    [32] Li T, Wu X, Liu F et al. Analytical methods based on the light-scattering of plasmonic nanoparticles at the single particle level with dark-field microscopy imaging[J]. Analyst, 142, 248-256(2017).

    [33] Li H B, Wang H L, Huang D S et al. Note: Raman microspectroscopy integrated with fluorescence and dark field imaging[J]. Review of Scientific Instruments, 85, 056109(2014).

    [34] Fan Z T, You X X, Xie Z B et al. Chip-based dark-filed microscopy for sensing the dynamical changes of single aerosol nanoparticles[J]. IEEE Journal of Selected Topics in Quantum Electronics, 29, 5700107(2023).

    [35] Kneipp J, Kneipp H, McLaughlin M et al. In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates[J]. Nano Letters, 6, 2225-2231(2006).

    [36] Maher R C. SERS hot spots[M]. Raman spectroscopy for nanomaterials characterization, 215-260(2012).

    [37] Le Ru E C, Etchegoin P G, Meyer M. Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection[J]. The Journal of Chemical Physics, 125, 204701(2006).

    [38] Etchegoin P G, Le Ru E C. A perspective on single molecule SERS: current status and future challenges[J]. Physical Chemistry Chemical Physics, 10, 6079-6089(2008).

    [39] Yoo H, Lee H, Park C et al. Novel single-particle analytical technique for submicron atmospheric aerosols: combined use of dark-field scattering and surface-enhanced Raman spectroscopy[J]. Analytical Chemistry, 94, 13028-13035(2022).

    [40] Wei H R, Leng W N, Song J et al. Improved quantitative SERS enabled by surface plasmon enhanced elastic light scattering[J]. Analytical Chemistry, 90, 3227-3237(2018).

    [41] Wang J, Zhang Z X, Chen X Y et al. Advancements in quantitative evaluation methods for optical microscopic images (invited)[J]. Laser & Optoelectronics Progress, 61, 0618013(2024).

    [42] Fu L, Lin C T, Karimi-Maleh H et al. Plasmonic nanoparticle-enhanced optical techniques for cancer biomarker sensing[J]. Biosensors, 13, 977(2023).

    [43] Asiala S M, Schultz Z D. Characterization of hotspots in a highly enhancing SERS substrate[J]. Analyst, 136, 4472-4479(2011).

    [44] Huang K C, Bando K, Ando J et al. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways[J]. Methods, 68, 348-353(2014).

    [45] Song C Y, Zhang J J, Jiang X Y et al. SPR/SERS dual-mode plasmonic biosensor via catalytic hairpin assembly-induced AuNP network[J]. Biosensors and Bioelectronics, 190, 113376(2021).

    [46] Zhu R, Feng H J, Li Q Q et al. Asymmetric core-shell gold nanoparticles and controllable assemblies for SERS ratiometric detection of microRNA[J]. Angewandte Chemie (International Edition), 60, 12560-12568(2021).

    [47] Henry A I, Sharma B, van Duyne R P. Continuous sensing of blood by dark-field microscopy and surface-enhanced Raman spectroscopy[J]. Nanotechnology, 3, 40-43(2012).

    [48] Tan Z, Zhu C C, Han L F et al. SERS and dark-field scattering dual-mode detection of intracellular hydrogen peroxide using biocompatible Au@COF nanosensor[J]. Sensors and Actuators B: Chemical, 373, 132770(2022).

    [49] Lee S, Chon H, Lee M et al. Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres[J]. Biosensors and Bioelectronics, 24, 2260-2263(2009).

    [50] Toma H E, da Silva Shinohara J, Grasseschi D. Confocal Raman microscopy and hyperspectral dark field microscopy imaging of chemical and biological systems[J]. Proceedings of SPIE, 9337, 933702(2015).

    [51] Mo Z H, Zou Y H, Lin J M et al. Dark-field imaging and Raman spectroscopy study of the interaction process between cells and nanoparticles[J]. Proceedings of SPIE, 12057, 1205728(2021).

    [52] Park J H, Park J, Dembereldorj U et al. Raman detection of localized transferrin-coated gold nanoparticles inside a single cell[J]. Analytical and Bioanalytical Chemistry, 401, 1631-1639(2011).

    [53] Potara M, Bawaskar M, Simon T et al. Biosynthesized silver nanoparticles performing as biogenic SERS-nanotags for investigation of C26 colon carcinoma cells[J]. Colloids and Surfaces B: Biointerfaces, 133, 296-303(2015).

    [54] Ip S, MacLaughlin C M, Joseph M et al. Dual-mode dark field and surface-enhanced Raman scattering liposomes for lymphoma and leukemia cell imaging[J]. Langmuir, 35, 1534-1543(2019).

    [55] Nagy-Simon T, Tatar A S, Craciun A M et al. Antibody conjugated, Raman tagged hollow gold-silver nanospheres for specific targeting and multimodal dark-field/SERS/two photon-FLIM imaging of CD19(+) B lymphoblasts[J]. ACS Applied Materials & Interfaces, 9, 21155-21168(2017).

    [56] Boca-Farcau S, Potara M, Simon T et al. Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells[J]. Molecular Pharmaceutics, 11, 391-399(2014).

    [57] Guan J X, Jia C C, Li Y W et al. Direct single-molecule dynamic detection of chemical reactions[J]. Science Advances, 4, eaar2177(2018).

    [58] Liu S C, Ying Y L, Long Y T. Rapid ultrasensitive monitoring the single-particle surface-enhanced Raman scattering (SERS) using a dark-field microspectroscopy assisted system[J]. Chinese Chemical Letters, 31, 473-475(2020).

    [59] Shi X, Li H W, Ying Y L et al. In situ monitoring of catalytic process variations in a single nanowire by dark-field-assisted surface-enhanced Raman spectroscopy[J]. Chemical Communications, 52, 1044-1047(2016).

    [60] Cao Y, Li D W, Zhao L J et al. Highly selective detection of carbon monoxide in living cells by palladacycle carbonylation-based surface enhanced Raman spectroscopy nanosensors[J]. Analytical Chemistry, 87, 9696-9701(2015).

    [61] Wang P Y, Lux L, Jin M M et al. Au/Ag nanobox-based near-infrared surface-enhanced Raman scattering for hydrogen sulfide sensing[J]. ACS Applied Bio Materials, 2, 417-423(2019).

    [62] Diehn S, Schlaad H, Kneipp J. Multivariate imaging for fast evaluation of in situ dark field microscopy hyperspectral data[J]. Molecules, 27, 5146(2022).

    [63] Salmon A R, Esteban R, Taylor R W et al. Monitoring early-stage nanoparticle assembly in microdroplets by optical spectroscopy and SERS[J]. Small, 12, 1788-1796(2016).

    [64] Asiala S M, Marr J M, Gervinskas G et al. Plasmonic color analysis of Ag-coated black-Si SERS substrate[J]. Physical Chemistry Chemical Physics, 17, 30461-30467(2015).

    [65] Talaga D, Comesaña-Hermo M, Ravaine S et al. Colocalized dark-field scattering, atomic force and surface-enhanced Raman scattering microscopic imaging of single gold nanoparticles[J]. Journal of Optics, 17, 114006(2015).

    [66] Lin K Q, Yi J, Hu S et al. Size effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy[J]. The Journal of Physical Chemistry C, 120, 20806-20813(2016).

    [67] Laurent G, Félidj N, Grand J et al. Raman scattering images and spectra of gold ring arrays[J]. Physical Review B, 73, 245417(2006).

    Xinyu Lan, Guojun Weng, Xin Li, Jianjun Li, Jian Zhu, Junwu Zhao. Dark Field Light Scattering Imaging Coupled with Surface Enhanced Raman Scattering for Analysis and Detection Application[J]. Laser & Optoelectronics Progress, 2025, 62(8): 0800003
    Download Citation