• Photonics Research
  • Vol. 13, Issue 4, 935 (2025)
Qinfen Huang1,2, Zhiwei Fang1,2,3,7, Zhe Wang2, Yiran Zhu1..., Jian Liu1, Yuan Zhou4, Jianping Yu2, Min Wang2 and Ya Cheng1,2,3,4,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • 2The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
  • 3Hefei National Laboratory, Hefei 230088, China
  • 4State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
  • 7e-mail: zwfang@phy.ecnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.544945 Cite this Article Set citation alerts
    Qinfen Huang, Zhiwei Fang, Zhe Wang, Yiran Zhu, Jian Liu, Yuan Zhou, Jianping Yu, Min Wang, Ya Cheng, "On-chip tunable single-mode high-power narrow-linewidth Fabry–Perot microcavity laser on Yb3+-doped thin-film lithium niobate," Photonics Res. 13, 935 (2025) Copy Citation Text show less
    References

    [1] S. Taccheo, P. Laporta, S. Longhi. Diode-pumped bulk erbium-ytterbium lasers. Appl. Phys. B, 63, 425-436(1996).

    [2] W. F. Krupke. Ytterbium solid-state lasers. The first decade. IEEE J. Sel. Top. Quantum Electron., 6, 1287(2000).

    [3] H. Liu, J. Nees, G. Mourou. Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser. Opt. Lett., 26, 1723-1725(2001).

    [4] A. A. Kaminskii. Laser crystals and ceramics: recent advances. Laser Photonics Rev., 1, 93(2007).

    [5] E. Innerhofer, T. Südmeyer, F. Brunner. 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser. Opt. Lett., 28, 367-369(2003).

    [6] H. M. Pask, R. J. Carman, D. C. Hanna. Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region. IEEE J. Sel. Top. Quantum Electron., 1, 2-13(1995).

    [7] J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson. High-energy, high-power ytterbium-doped Q-switched fiber laser. Opt. Lett., 25, 37-39(2000).

    [8] Y. Jeong, J. Sahu, D. Payne. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt. Express, 12, 6088-6092(2004).

    [9] M. N. Zervas, C. A. Codemard. High power fiber lasers: a review. IEEE J. Sel. Top. Quantum Electron., 20, 0904123(2014).

    [10] B. Shiner. Fiber lasers for material processing. Proc. SPIE, 5706, 60-68(2005).

    [11] A. Sennaroglu. Solid-state Lasers and Applications(2007).

    [12] J. Körner, S. Zulić, J. Reiter. Compact, diode-pumped, unstable cavity Yb:YAG laser and its application in laser shock peening. Opt. Express, 29, 15724-15732(2021).

    [13] G. Lifante. Integrated Photonics: Fundamentals(2003).

    [14] P. Cheben, R. Halir, J. H. Schmid. Subwavelength integrated photonics. Nature, 560, 565-572(2018).

    [15] W. Bogaerts, D. Pérez, J. Capmany. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [16] J. D. B. Bradley, E. S. Hosseini. Monolithic erbium- and ytterbium-doped microring lasers on silicon chips. Opt. Express, 22, 12226-12237(2014).

    [17] M. D. Goede, L. Chang, J. Mu. Al2O3:Yb3+ integrated microdisk laser label-free biosensor. Opt. Lett., 44, 5937(2019).

    [18] W. A. P. M. Hendriks, L. Chang, C. I. Van Emmerik. Rare-earth ion-doped Al2O3 for active integrated photonics. Adv. Phys. X, 6, 1833753(2021).

    [19] D. Zhu, L. Shao, M. Yu. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242-352(2021).

    [20] G. Chen, N. Li, J. D. Ng. Advances in lithium niobate photonics: development status and perspectives. Adv. Photonics, 4, 034003(2022).

    [21] Z. Xie, F. Bo, J. Lin. Recent development in integrated lithium niobate photonics. Adv. Phys. X, 9, 2322739(2024).

    [22] Y. Chen. Photonic integration on rare-earth ion doped thin-film lithium niobate. Sci. China Phys. Mech. Astron., 65, 294231(2022).

    [23] S. Yu, Z. Fang, Z. Wang. On-chip single-mode thin-film lithium niobate Fabry–Perot resonator laser based on Sagnac loop reflectors. Opt. Lett., 48, 2660-2663(2023).

    [24] Y. Liang, J. Zhou, R. Wu. Monolithic single-frequency microring laser on an erbium-doped thin film lithium niobate fabricated by a photolithography assisted chemo-mechanical etching. Opt. Contin., 1, 1193-1201(2022).

    [25] J. Zhou, Y. Liang, Z. Liu. On-chip integrated waveguide amplifiers on erbium-doped thin film lithium niobate on insulator. Laser Photonics Rev., 15, 2100030(2021).

    [26] L. Song, J. Chen, R. Wu. Electro-optically tunable optical delay line with a continuous tuning range of ∼220 fs in thin-film lithium niobate. Opt. Lett., 48, 2261-2264(2023).

    Qinfen Huang, Zhiwei Fang, Zhe Wang, Yiran Zhu, Jian Liu, Yuan Zhou, Jianping Yu, Min Wang, Ya Cheng, "On-chip tunable single-mode high-power narrow-linewidth Fabry–Perot microcavity laser on Yb3+-doped thin-film lithium niobate," Photonics Res. 13, 935 (2025)
    Download Citation