• Acta Optica Sinica
  • Vol. 45, Issue 6, 0601004 (2025)
Yupeng Chang1, Haodong Qiu2, Ning Xu1, Zheng Kong2, and Liang Mei2,*
Author Affiliations
  • 1DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, Liaoning , China
  • 2School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning , China
  • show less
    DOI: 10.3788/AOS241243 Cite this Article Set citation alerts
    Yupeng Chang, Haodong Qiu, Ning Xu, Zheng Kong, Liang Mei. Simulation of 780-nm High-Spectral-Resolution LiDAR Based on Rubidium Cell[J]. Acta Optica Sinica, 2025, 45(6): 0601004 Copy Citation Text show less
    References

    [1] Jagodnicka A K, Stacewicz T, Karasiński G et al. Particle size distribution retrieval from multiwavelength lidar signals for droplet aerosol[J]. Applied Optics, 48, B8-B16(2009).

    [2] Shao J F, Mao J D. The observations of aerosol optical and microphysical properties by using a multi-wavelength lidar[J]. Proceedings of SPIE, 9674, 96741H(2015).

    [3] Hara Y, Nishizawa T, Sugimoto N et al. Retrieval of aerosol components using multi-wavelength Mie-Raman lidar and comparison with ground aerosol sampling[J]. Remote Sensing, 10, 937(2018).

    [4] Sassen K, Jiang Z, Webley P et al. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska[J]. Geophysical Research Letters, 34, L08803(2007).

    [5] Hicks-Jalali S, Sica R J, Martucci G et al. A Raman lidar tropospheric water vapour climatology and height-resolved trend analysis over Payerne, Switzerland[J]. Atmospheric Chemistry and Physics, 20, 9619-9640(2020).

    [6] Stillwell R A, Spuler S M, Hayman M et al. Demonstration of a combined differential absorption and high spectral resolution lidar for profiling atmospheric temperature[J]. Optics Express, 28, 71-93(2019).

    [7] Piironen P, Eloranta E W. Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter[J]. Optics Letters, 19, 234-236(1994).

    [8] Ke J, Sun Y S, Dong C Z et al. Development of China’s first space-borne aerosol-cloud high-spectral-resolution lidar: retrieval algorithm and airborne demonstration[J]. PhotoniX, 3, 17(2022).

    [9] Shipley S T, Tracy D H, Eloranta E W et al. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: theory and instrumentation[J]. Applied Optics, 22, 3716-3724(1983).

    [10] Shimizu H, Lee S A, She C Y. High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters[J]. Applied Optics, 22, 1373-1381(1983).

    [11] Hair J W, Caldwell L M, Krueger D A et al. High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles[J]. Applied Optics, 40, 5280-5294(2001).

    [12] Imaki M, Kobayashi T. Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties[J]. Applied Optics, 44, 6023-6030(2005).

    [13] Liu J, Hua D X, Li Y. Development of a high-spectral-resolution lidar for accurate profiling of the urban aerosol spatial variations[J]. Journal of Physics: Conference Series, 48, 745-749(2006).

    [14] Liu D, Hostetler C, Miller I et al. Modeling of a tilted pressure-tuned field-widened Michelson interferometer for application in high spectral resolution lidar[J]. Proceedings of SPIE, 8159, 81590Q(2011).

    [15] Burton S P, Hair J W, Kahnert M et al. Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne high spectral resolution lidar[J]. Atmospheric Chemistry & Physics, 15, 13453-13473(2015).

    [16] Kolgotin A, Müller D, Romanov A. Particle microphysical parameters and the complex refractive index from 3β+2α HSRL/Raman lidar measurements: conditions of accurate retrieval, retrieval uncertainties and constraints to suppress the uncertainties[J]. Atmosphere, 14, 1159(2023).

    [17] Burton S P, Hostetler C A, Cook A L et al. Calibration of a high spectral resolution lidar using a Michelson interferometer, with data examples from ORACLES[J]. Applied Optics, 57, 6061-6075(2018).

    [18] Shen F H, Xie C B, Qiu C Q et al. Fabry-Perot etalon-based ultraviolet trifrequency high-spectral-resolution lidar for wind, temperature, and aerosol measurements from 0.2 to 35 km altitude[J]. Applied Optics, 57, 9328-9340(2018).

    [19] Zhang Y P, Liu D, Yang Y Y et al. Spectrum filter performance analysis on near-infrared high-spectral-resolution lidar[J]. Chinese Journal of Lasers, 43, 0414004(2016).

    [20] Shen X. The key technologies and system experimentsof high-spectral-resolution lidar[D](2021).

    [21] Hayman M, Spuler S. Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols[J]. Optics express, 25, A1096-A1110(2017).

    [22] Buckholtz Z N, Razenkov I, Garcia J et al. Performance of low-cost, diode-based HSRL system with simplified optical setup[M]. Proceedings of the 30th international laser radar conference, 11-17(2023).

    [23] Hetlage M, Limbach C. Atomic Barium vapor filter for ultraviolet high-spectral-resolution temperature LiDAR[M]. Proceedings of the 30th international laser radar conference, 49-55(2023).

    [24] Cheng Z T, Liu D, Luo J et al. Effects of spectral discrimination in high-spectral-resolution lidar on the retrieval errors for atmospheric aerosol optical properties[J]. Applied Optics, 53, 4386-4397(2014).

    [25] Russell P B, Swissler T J, McCormick M P. Methodology for error analysis and simulation of lidar aerosol measurements[J]. Applied Optics, 18, 3783-3797(1979).

    [26] Rocadenbosch F, Reba M M, Sicard M et al. Practical analytical backscatter error bars for elastic one-component lidar inversion algorithm[J]. Applied Optics, 49, 3380-3393(2010).

    [27] Yu Y H, Wang J, Dong Q L et al. Electro-hyperfine phenomenon of the Rb87 basic state caused by electric field[J]. Chinese Journal of Atomic and Molecular Physics, 17, 71-74(2000).

    [28] Salomon C, Dalibard J, Phillips W D et al. Laser cooling of cesium atoms below 3 μK[J]. Europhysics Letters (EPL), 12, 683-688(1990).

    [29] Steck D A. Rubidium 87 D line data[EB/OL]. https:∥steck.us/alkalidata/rubidium87numbers.1.6.pdf

    [30] Yang J, Pan B L, Wang Y J et al. Spectral analysis and pressure broadening mechanism of laser diode-pumped rubidium vapor laser D1 and D2 lines[J]. Chinese Journal of Lasers, 38, s115001(2011).

    [31] Zhou Y D. Design of 780 nm high spectral resolution lidar system based on laser diode[D](2020).

    [32] Alcock C B, Itkin V P, Horrigan M K. Vapour pressure equations for the metallic elements: 298‒2500 K[J]. Canadian Metallurgical Quarterly, 23, 309-313(1984).

    [33] Eloranta E E. High spectral resolution lidar[M]. Weitkamp C, 102, 143-163(2006).

    Yupeng Chang, Haodong Qiu, Ning Xu, Zheng Kong, Liang Mei. Simulation of 780-nm High-Spectral-Resolution LiDAR Based on Rubidium Cell[J]. Acta Optica Sinica, 2025, 45(6): 0601004
    Download Citation