• Journal of Inorganic Materials
  • Vol. 38, Issue 6, 619 (2023)
Ling DING1, Rui JIANG1, Zilong TANG2, and Yunqiong YANG3
Author Affiliations
  • 11. Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
  • 22. CESI (Guangzhou) Standards & Testing Institute Co., Ltd., Guangzhou 510700, China
  • 33. School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
  • show less
    DOI: 10.15541/jim20220566 Cite this Article
    Ling DING, Rui JIANG, Zilong TANG, Yunqiong YANG. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors[J]. Journal of Inorganic Materials, 2023, 38(6): 619 Copy Citation Text show less
    Schematic illustration of structural and electronic structural changes of MXene in (a) aqueous and (b) nonaqueous Li+ electrolytes[21]
    1. Schematic illustration of structural and electronic structural changes of MXene in (a) aqueous and (b) nonaqueous Li+ electrolytes[21]
    Preparation method and electrochemical performance of iodine-containing terminated MXene[43]
    2. Preparation method and electrochemical performance of iodine-containing terminated MXene[43]
    Synthesis procedure and electrochemical performance of 900N-Ti2CTx nanosheets[49]
    3. Synthesis procedure and electrochemical performance of 900N-Ti2CTx nanosheets[49]
    (a) Schematic illustration of the preparation and (b) electrochemical performance of the MXene ribbon MR-0.5[53] Colorful figures are available on website
    4. (a) Schematic illustration of the preparation and (b) electrochemical performance of the MXene ribbon MR-0.5[53] Colorful figures are available on website
    Schematic illustration and electrochemical performance of d-Ti3C2/NF composite[58]
    5. Schematic illustration and electrochemical performance of d-Ti3C2/NF composite[58]
    Preparative schematic illustration and electrochemical performance of MXene/PANI film[61]
    6. Preparative schematic illustration and electrochemical performance of MXene/PANI film[61]
    Schematic diagram of the equipment used for size grading MXene and size-refinement effect characterization[69]
    7. Schematic diagram of the equipment used for size grading MXene and size-refinement effect characterization[69]
    Preparative schematic illustration of multi-scale structural engineering strategy and electrochemical performance of ordered MXene hydrogel supercapacitor electrode[70]
    8. Preparative schematic illustration of multi-scale structural engineering strategy and electrochemical performance of ordered MXene hydrogel supercapacitor electrode[70]
    (a) Schematic and (b) atomic-scale schematic of intercalated PPy in the interlayer of I-Ti3C2[94]
    9. (a) Schematic and (b) atomic-scale schematic of intercalated PPy in the interlayer of I-Ti3C2[94]
    ElectrodeSpecific capacityRate capabilityPower density/energy densityElectrolyteRef.
    MXene-rHGO1445 F·cm−3@2 mV·s−1988 F·cm−1@500 mV·s−138.6 Wh·L−1/206 W·L−13 mol·L−1 H2SO4[75]
    Ti3C2/CNTs134 F·g-1@1 A·g-1-2.77 Wh·kg−1/311 W·kg−16 mol·L−1 KOH[76]
    MnO2@MXene/CNT371.1 F·cm−3@1 A·cm−3-8.22 mWh·cm−3/276.28 mW·cm−31 mol·L−1 H2SO4[77]
    MnO2/Ti3C2Tx130.5 F·g−1@0.2 A·g−1130.5 F·g−1@0.2 A·g−1-1 mol·L−1 Na2SO4[16]
    Co3O4-Nb2C1061 F·g-1@2 A·g-1547 F·g−1@50 A·g−160.3 Wh·kg−1/670 W·kg−16 mol·L−1 KOH[78]
    Co-MXene1081 F·g-1@0.5 A·g-1-26.06 Wh·kg−1/700 W·kg−16 mol·L−1 KOH[79]
    MXene/MnCo2O4806.67 F·g-1@1 A·g-1545.83 F·g−1@5 A·g−126.8 Wh·kg−1/2.88 kW·kg−11 mol·L−1 KOH[80]
    NiMoO4/Ti3C2Tx545.5 C·g−1(1364 F·g−1)@0.5 A·g−166.5 C·g−1 @5 A·g−133.36 Wh·kg−1/400.08 W·kg−13 mol·L−1 KOH[3]
    MoO3 NWs/MXene@CC775 F·g-1@1 A·g-1--2 mol·L−1 KOH[81]
    Ti3C2Tx/CoS21320 F·g−1@1 A·g−11320 F·g−1@1 A·g−1-2 mol·L−1 KOH[82]
    MXene-NiCo2S4@NF596.69 C·g−1@1 A·g−1596.69 C·g−1@1 A·g−1-3 mol·L−1 KOH[83]
    Ti3C2-DA-NiMoS41288 F·g-1@1 A·g-11288 F·g−1@1 A·g−140.5 Wh·kg−1/810 W·kg−1Not mentioned[84]
    NiCo2Se4/MXene953.8 F·g-1@1 A·g-1-22.4 Wh·kg−1/800 W·kg−13 mol·L−1 KOH[85]
    Co Ni(Ox)Se @MXene1782 F·g-1@5 mV·s-1-7.2 kW·kg−1/131.9 Wh·kg−11 mol·L−1 KOH[86]
    NS-MXene495 F·g-1@1 A·g-1180 F·g−1@10 A·g−1-1 mol·L−1 H2SO4[46]
    MXene-PANI/a-Fe2O3-MnO2/MXene-PANI661 F·g-13138 mF·cm−3@3 mV·s -1-53.32 Wh·L−1/17.45 Wh·kg−11 mol·L−1 H2SO4[87]
    Ti3C2Tx/Ni-MOFs1124 F·g-1@1 A·g-1697 F·g−1@20 A·g−124 Wh·kg−1/8 kW·kg−16 mol·L−1 KOH[88]
    BiOCl-Ti3C2Tx396.5 F·cm−3@1 A·g-1228 F·cm−3@15 A·g−115.2 Wh·kg−1/567.4 W·kg−11 mol·L−1 KOH[89]
    Table 1. Examples of electrochemical properties of MXene-based electrodes
    Ling DING, Rui JIANG, Zilong TANG, Yunqiong YANG. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors[J]. Journal of Inorganic Materials, 2023, 38(6): 619
    Download Citation