• Journal of Inorganic Materials
  • Vol. 38, Issue 6, 619 (2023)
Ling DING1, Rui JIANG1, Zilong TANG2, and Yunqiong YANG3
Author Affiliations
  • 11. Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
  • 22. CESI (Guangzhou) Standards & Testing Institute Co., Ltd., Guangzhou 510700, China
  • 33. School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
  • show less
    DOI: 10.15541/jim20220566 Cite this Article
    Ling DING, Rui JIANG, Zilong TANG, Yunqiong YANG. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors[J]. Journal of Inorganic Materials, 2023, 38(6): 619 Copy Citation Text show less
    References

    [2] J ZHANG, D JIANG, L LIAO et al. Ti3C2Tx MXene based hybrid electrodes for wearable supercapacitors with varied deformation capabilities. Chemical Engineering Journal, 429, 132232(2022).

    [3] Y WANG, J SUN, X QIAN et al. 2D/2D heterostructures of nickel molybdate and MXene with strong coupled synergistic effect towards enhanced supercapacitor performance. Journal of Power Sources, 414, 540(2019).

    [4] Q SHAN, X MU, M ALHABEB et al. Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes. Electrochemistry Communications, 96, 103(2018).

    [6] M NAGUIB, M KURTOGLU, V PRESSER et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248(2011).

    [7] M NAGUIB, O MASHTALIR, J CARLE et al. Two-dimensional transition metal carbides. ACS Nano, 6, 1322(2012).

    [8] O MASHTALIR, M NAGUIB, V N MOCHALIN et al. Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716(2013).

    [9] J F ZHANG, H Y CAO, H B WANG. Research progress of novel two-dimensional material MXene. Journal of Inorganic Materials, 32, 561(2017).

    [10] H T YAN, X H LI, M Z LIU et al. Quantum capacitance of supercapacitor electrodes based on the F-functionalized M2C MXenes: a first-principles study. Vacuum, 201, 111094(2022).

    [11] Q WANG, X PAN, X WANG et al. Fabrication strategies and application fields of novel 2D Ti3C2Tx (MXene) composite hydrogels: a mini-review. Ceramics International, 47, 4398(2021).

    [12] X ZHAO, A VASHISTH, J W BLIVIN et al. pH, nanosheet concentration, and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions. Advanced Materials Interfaces, 7, 2000845(2020).

    [13] F BU, M M ZAGHO, Y IBRAHIM et al. Porous MXenes: synthesis, structures, and applications. Nano Today, 30, 100803(2020).

    [14] N THAKUR, P KUMAR, D C SATI et al. Recent advances in two-dimensional MXenes for power and smart energy systems. Journal of Energy Storage, 50, 104604(2022).

    [15] W MENG, X LIU, H SONG et al. Advances and challenges in 2D MXenes: from structures to energy storage and conversions. Nano Today, 40, 101273(2021).

    [16] H JIANG, Z WANG, Q YANG et al. A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors. Electrochimica Acta, 290, 695(2018).

    [17] M R LUKATSKAYA, S KOTA, Z LIN et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2, 17105(2017).

    [18] J ZHANG, N KONG, D HEGH et al. Freezing titanium carbide aqueous dispersions for ultra-long-term storage. ACS Applied Materials & Interfaces, 12, 34032(2020).

    [19] D MOMODU, A S ZERAATI, F L PABLOS et al. Hybrid energy storage using nitrogen-doped graphene and layered-MXene (Ti3C2) for stable high-rate supercapacitors. Electrochimica Acta, 388, 138664(2021).

    [20] J WU, Q LI, C E SHUCK et al. An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Research, 15, 535(2021).

    [21] M OKUBO, A SUGAHARA, S KAJIYAMA et al. MXene as a charge storage host. Accounts of Chemical Research, 51, 591(2018).

    [22] K HANTANASIRISAKUL, Y GOGOTSI. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Advanced Materials, 30, 1804779(2018).

    [23] G YING, S KOTA, A D DILLON et al. Conductive transparent V2CTx (MXene) films. Chemistry of Flat Materials, 8, 25(2018).

    [24] K WANG, Y ZHOU, W XU et al. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceramics International, 42, 8419(2016).

    [25] J HALIM, I PERSSON, E J MOON et al. Electronic and optical characterization of 2D Ti2C and Nb2C (MXene) thin films. Journal of Physics: Condensed Matter, 31, 165301(2019).

    [26] E E ELEMIKE, O E OSAFILE, E OMUGBE. New perspectives 2Ds to 3Ds MXenes and graphene functionalized systems as high performance energy storage materials. Journal of Energy Storage, 42, 102993(2021).

    [27] V N BORYSIUK, V N MOCHALIN, Y GOGOTSI. Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: a molecular dynamics study. Computational Materials Science, 143, 418(2018).

    [28] N ZHANG, Y HONG, S YAZDANPARAST et al. Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: a comprehensive first principles study. 2D Materials, 5, 045004(2018).

    [29] X LI, Y MA, Y YUE et al. A flexible Zn-ion hybrid micro- supercapacitor based on MXene anode and V2O5 cathode with high capacitance. Chemical Engineering Journal, 428, 130965(2022).

    [30] S KAJIYAMA, L SZABOVA, H IINUMA et al. Enhanced Li-ion accessibility in MXene titanium carbide by steric chloride termination. Advanced Energy Materials, 7, 1601873(2017).

    [31] S KAJIYAMA, L SZABOVA, K SODEYAMA et al. Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano, 10, 3334(2016).

    [32] K XU, X JI, B ZHANG et al. Charging/discharging dynamics in two-dimensional titanium carbide (MXene) slit nanopore: insights from molecular dynamic study. Electrochimica Acta, 196, 75(2016).

    [33] H YU, Y WANG, Y JING et al. Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage. Small, 15, 1901503(2019).

    [34] M X XIAO, M M LI, E H SONG et al. Halogenated Ti3C2 MXene as high capacity electrode material for Li-ion batteries. Journal of Inorganic Materials, 37, 660(2022).

    [35] W LIU, Y ZHENG, Z ZHANG et al. Ultrahigh gravimetric and volumetric capacitance in Ti3C2Tx MXene negative electrode enabled by surface modification and in-situ intercalation. Journal of Power Sources, 521, 230965(2022).

    [36] W CHEN, J TANG, P CHENG et al. 3D porous MXene (Ti3C2Tx) prepared by alkaline-induced flocculation for supercapacitor electrodes. Materials, 15, 925(2022).

    [37] J CHEN, H CHEN, M CHEN et al. Nacre-inspired surface- engineered MXene/nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors. Chemical Engineering Journal, 428, 131380(2022).

    [38] J LI, X YUAN, C LIN et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Advanced Energy Materials, 7, 1602725(2017).

    [39] X CHEN, Y ZHU, M ZHANG et al. n-Butyllithium-treated Ti3C2Tx MXene with excellent pseudocapacitor performance. ACS Nano, 13, 9449(2019).

    [40] V KAMYSBAYEV, A S FILATOV, H HU et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science, 369, 979(2020).

    [41] K MAO, J SHI, Q ZHANG et al. High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for degradable micro Zn-ion hybrid supercapacitors. Nano Energy, 103, 107791(2022).

    [42] T LI, L YAO, Q LIU et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angewandte Chemie International Edition, 57, 6115(2018).

    [43] S GONG, F ZHAO, H XU et al. Iodine-functionalized titanium carbide MXene with ultra-stable pseudocapacitor performance. Journal of Colloid and Interface Science, 615, 643(2022).

    [44] K NASRIN, V SUDHARSHAN, K SUBRAMANI. In-situ synergistic 2D/2D MXene/BCN heterostructure for superlative energy density supercapacitor with super-long life. Small, 18, 2106051(2022).

    [46] F YANG, D HEGH, D SONG et al. Synthesis of nitrogen-sulfur co-doped Ti3C2Tx MXene with enhanced electrochemical properties. Materials Reports: Energy, 2, 100079(2022).

    [47] Y WEN, T E RUFFORD, X CHEN et al. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy, 38, 368(2017).

    [48] F YANG, D HEGH, D SONG et al. A nitrogenous pre-intercalation strategy for the synthesis of nitrogen-doped Ti3C2Tx MXene with enhanced electrochemical capacitance. Journal of Materials Chemistry A, 9, 6393(2021).

    [49] Y YOON, M LEE, S K KIM et al. A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high- performance supercapacitor electrodes. Advanced Energy Materials, 8, 1703173(2018).

    [50] J B LEE, G H CHOI, P J YOO. Oxidized-co-crumpled multiscale porous architectures of MXene for high performance supercapacitors. Journal of Alloys and Compounds, 887, 161304(2021).

    [51] M YAO, Y CHEN, Z WANG et al. Boosting gravimetric and volumetric energy density via engineering macroporous MXene films for supercapacitors. Chemical Engineering Journal, 395, 124057(2020).

    [52] G GUAN, P LI, X SHI et al. Electrode based on porous MXene nanosheets for high-performance supercapacitor. Journal of Alloys and Compounds, 924, 166647(2022).

    [53] X ZHENG. Enhancing the ion accessibility of Ti3C2Tx MXene films by femtosecond laser ablation towards high-rate supercapacitors. Journal of Alloys and Compounds, 899, 163275(2022).

    [54] S WANG, S ZHAO, X GUO et al. 2D Material-based heterostructures for rechargeable batteries. Advanced Energy Materials, 12, 2100864(2022).

    [55] Y DENG, T SHANG, Z WU et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Advanced Materials, 31, 1902432(2019).

    [56] Z ZHU, Z WANG, Z BA et al. 3D MXene-holey graphene hydrogel for supercapacitor with superior energy storage. Journal of Energy Storage, 47, 103911(2022).

    [57] Y WANG, X WANG, X LI et al. Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Advanced Functional Materials, 29, 1900326(2019).

    [58] J GUO, Y ZHAO, A LIU et al. Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor. Electrochimica Acta, 305, 164(2019).

    [59] T GUO, D ZHOU, L PANG et al. Sandwich-type macroporous Ti3C2Tx MXene frameworks for supercapacitor electrode. Scripta Materialia, 213, 114590(2022).

    [60] G MURALI, J RAWAL, J K R MODIGUNTA et al. A review on MXenes: new-generation 2D materials for supercapacitors. Sustainable Energy & Fuels, 5, 5672(2021).

    [61] W LUO, Y WEI, Z ZHUANG et al. Fabrication of Ti3C2Tx MXene/polyaniline composite films with adjustable thickness for high-performance flexible all-solid-state symmetric supercapacitors. Electrochimica Acta, 406, 139871(2022).

    [62] H GUO, J ZHANG, F YANG et al. Sandwich-like porous MXene/ Ni3S4/CuS derived from MOFs as superior supercapacitor electrode. Journal of Alloys and Compounds, 906, 163863(2022).

    [63] H GUO, J ZHANG, M XU et al. Zeolite-imidazole framework derived nickel-cobalt hydroxide on ultrathin MXene nanosheets for long life and high performance supercapacitance. Journal of Alloys and Compounds, 888, 161250(2021).

    [64] X LIU, Z LU, X HUANG et al. Self-assembled S, N co-doped reduced graphene oxide/MXene aerogel for both symmetric liquid- and all-solid-state supercapacitors. Journal of Power Sources, 516, 230682(2021).

    [65] J XU, J ZHU, C GONG et al. Achieving high yield of Ti3C2T MXene few-layer flakes with enhanced pseudocapacior performance by decreasing precursor size. Chinese Chemical Letters, 31, 1039(2020).

    [66] S LUO, S PATOLE, S ANWER et al. Tensile behaviors of Ti3C2Tx (MXene) films. Nanotechnology, 31, 395704(2020).

    [67] K MALESKI, C E REN, M Q ZHAO et al. Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Applied Materials & Interfaces, 10, 24491(2018).

    [68] X LI, Y MA, P SHEN et al. Self‐healing microsupercapacitors with size-dependent 2D MXene. ChemElectroChem, 7, 821(2020).

    [69] J SUN, Y LIU, J HUANG et al. Size-refinement enhanced flexibility and electrochemical performance of MXene electrodes for flexible waterproof supercapacitors. Journal of Energy Chemistry, 63, 594(2021).

    [70] X HUANG, J HUANG, D YANG et al. A multi-scale structural engineering strategy for high-performance MXene hydrogel supercapacitor electrode. Advanced Science, 8, 2101664(2021).

    [71] Y XIA, T S MATHIS, M Q ZHAO et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature, 557, 409(2018).

    [72] J YU, M ZENG, J ZHOU et al. A one-pot synthesis of nitrogen doped porous MXene/TiO2 heterogeneous film for high-performance flexible energy storage. Chemical Engineering Journal, 426, 130765(2021).

    [73] Y TIAN, B QUE, Y LUO et al. Amino-rich surface-modified MXene as anode for hybrid aqueous proton supercapacitors with superior volumetric capacity. Journal of Power Sources, 495, 229790(2021).

    [74] J WANG, J GONG, H ZHANG et al. Construction of hexagonal nickel-cobalt oxide nanosheets on metal-organic frameworks based on MXene interlayer ion effect for hybrid supercapacitors. Journal of Alloys and Compounds, 870, 159466(2021).

    [75] Z FAN, Y WANG, Z XIE et al. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Advanced Science, 5, 1800750(2018).

    [76] L YANG, W ZHENG, P ZHANG et al. MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. Journal of Electroanalytical Chemistry, 830-831, 1(2018).

    [77] Z GUO, Y LI, Z LU et al. High-performance MnO2@MXene/carbon nanotube fiber electrodes with internal and external construction for supercapacitors. Journal of Materials Science, 57, 3613(2022).

    [78] B SHEN, X LIAO, X ZHANG et al. Synthesis of Nb2C MXene-based 2D layered structure electrode material for high-performance battery-type supercapacitors. Electrochimica Acta, 413, 140144(2022).

    [79] Y ZHANG, J CAO, Z YUAN et al. Assembling Co3O4 nanoparticles into MXene with enhanced electrochemical performance for advanced asymmetric supercapacitors. Journal of Colloid and Interface Science, 599, 109(2021).

    [80] Q XIA, W CAO, F XU et al. Assembling MnCo2O4 nanoparticles embedded into MXene with effectively improved electrochemical performance. Journal of Energy Storage, 47, 103906(2022).

    [81] M MAHMOOD, K CHAUDHARY, M SHAHID et al. Fabrication of MoO3 nanowires/MXene@CC hybrid as highly conductive and flexible electrode for next-generation supercapacitors applications. Ceramics International, 48, 19314(2022).

    [82] H LIU, R HU, J QI et al. One‐step synthesis of nanostructured CoS2 grown on titanium carbide MXene for high‐performance asymmetrical supercapacitors. Advanced Materials Interfaces, 7, 1901659(2020).

    [83] H LI, X CHEN, E ZALNEZHAD et al. 3D hierarchical transition-metal sulfides deposited on MXene as binder-free electrode for high-performance supercapacitors. Journal of Industrial and Engineering Chemistry, 82, 309(2020).

    [84] J XU, X YANG, Y ZOU et al. High density anchoring of NiMoS4 on ultrathin Ti3C2 MXene assisted by dopamine for supercapacitor electrode materials. Journal of Alloys and Compounds, 891, 161945(2022).

    [85] Y LIU, J GONG, J WANG et al. Facile fabrication of MXene supported nickel-cobalt selenide ternary composite via one-step hydrothermal for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 899, 163354(2022).

    [86] R KARKUZHALI, S MANOJ, K SHANMUGAPRIYA et al. MXene-based O/Se-rich bimetallic nanocomposites for high performance solid-state symmetric supercapacitors. Journal of Solid State Chemistry, 306, 122727(2022).

    [87] C LI, S WANG, Y CUI et al. Sandwich-like high-load MXene/polyaniline film electrodes with ultrahigh volumetric capacitance for flexible supercapacitors. Journal of Colloid and Interface Science, 620, 35(2022).

    [88] X ZHANG, S YANG, W LU et al. MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors. Journal of Colloid and Interface Science, 592, 95(2021).

    [89] Q X XIA, N M SHINDE, J M YUN et al. Bismuth oxychloride/ MXene symmetric supercapacitor with high volumetric energy density. Electrochimica Acta, 271, 351(2018).

    [90] J YAN, C E REN, K MALESKI et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Advanced Functional Materials, 27, 1701264(2017).

    [91] S LIAN, G LI, F SONG et al. Surfactant-free self-assembled MXene/carbon nanotubes hybrids for high-rate sodium- and potassium-ion storage. Journal of Alloys and Compounds, 901, 163426(2022).

    [92] T BAI, W WANG, G XUE et al. Free-standing, flexible carbon@MXene films with cross-linked mesoporous structures toward supercapacitors and pressure sensors. ACS Applied Materials & Interfaces, 13, 57576(2021).

    [93] D ZHANG, M LUO, K YANG et al. Porosity-adjustable MXene film with transverse and longitudinal ion channels for flexible supercapacitors. Microporous and Mesoporous Materials, 326, 111389(2021).

    [94] M ZHU, Y HUANG, Q DENG et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Advanced Energy Materials, 6, 1600969(2016).

    [95] A KAUSAR. Polymer/MXene nanocomposite-a new age for advanced materials. Polymer-Plastics Technology and Materials, 60, 1377(2021).

    [96] C RUAN, D ZHU, J QI et al. MXene-modulated CoNi2S4 dendrite as enhanced electrode for hybrid supercapacitors. Surfaces and Interfaces, 25, 101274(2021).

    [97] T Z SHI, Y L FENG, T PENG et al. Sea urchin-shaped Fe2O3 coupled with 2D MXene nanosheets as negative electrode for high-performance asymmetric supercapacitors. Electrochimica Acta, 381, 138245(2021).

    [98] P GENG, S ZHENG, H TANG et al. Transition metal sulfides based on graphene for electrochemical energy storage. Advanced Energy Materials, 8, 1703259(2018).

    [99] Z HE, Y WANG, Y LI et al. Superior pseudocapacitive performance and mechanism of self-assembled MnO2/MXene films as positive electrodes for flexible supercapacitors. Journal of Alloys and Compounds, 899, 163241(2022).

    [100] X CHEN, Z DING, H YU et al. Facile fabrication of CuCo2S4 nanoparticles/MXene composite as anode for high-performance asymmetric supercapacitor. Materials Chemistry Frontiers, 5, 7606(2021).

    [101] Y T LIU, P ZHANG, N SUN et al. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Advanced Materials, 30, 1707334(2018).

    [102] H LI, Y LIU, S LIN et al. Laser crystallized sandwich-like MXene/Fe3O4/MXene thin film electrodes for flexible supercapacitors. Journal of Power Sources, 497, 229882(2021).

    [103] X WANG, H SONG, S MA et al. Template ion-exchange synthesis of Co-Ni composite hydroxides nanosheets for supercapacitor with unprecedented rate capability. Chemical Engineering Journal, 432, 134319(2022).

    [104] M MAHMOOD, S ZULFIQAR, M F WARSI et al. Nanostructured V2O5 and its nanohybrid with MXene as an efficient electrode material for electrochemical capacitor applications. Ceramics International, 48, 2345(2022).

    [105] Z FAN, Y WANG, Z XIE et al. A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale, 10, 9642(2018).

    Ling DING, Rui JIANG, Zilong TANG, Yunqiong YANG. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors[J]. Journal of Inorganic Materials, 2023, 38(6): 619
    Download Citation