• Laser & Optoelectronics Progress
  • Vol. 60, Issue 2, 0210012 (2023)
Hui Gao, Zhijing Yang*, Wing-Kuen Ling, Jiangzhong Cao, and Weijie Li
Author Affiliations
  • School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • show less
    DOI: 10.3788/LOP213314 Cite this Article Set citation alerts
    Hui Gao, Zhijing Yang, Wing-Kuen Ling, Jiangzhong Cao, Weijie Li. Point Cloud Completion Network Based on Multiencoders and Residual-Transformer[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210012 Copy Citation Text show less
    References

    [1] Huang Z T, Yu Y K, Xu J W et al. PF-net: point fractal network for 3D point cloud completion[C], 7659-7667(2020).

    [2] Tchapmi L P, Kosaraju V, Rezatofighi H et al. TopNet: structural point cloud decoder[C], 383-392(2019).

    [3] Li R B, Yuan X P, Gan S et al. Point cloud registration method based on dual quaternion description of line-planar feature constraints[J]. Acta Optica Sinica, 42, 0214003(2022).

    [4] Wang W Q, Li Z C, Fu Y J et al. Multi-factor segmentation of point cloud based on improved multi-rule region growing[J]. Acta Optica Sinica, 41, 0528001(2021).

    [5] Li W G, Fan X, Mei Y et al. Road marking extraction method based on vehicle laser point cloud[J]. Chinese Journal of Lasers, 49, 0710001(2022).

    [6] Zhang L, Xu X B, Cao C F et al. Robot pose estimation method based on image and point cloud fusion with dynamic feature elimination[J]. Chinese Journal of Lasers, 49, 0610001(2022).

    [7] Soltani A A, Huang H B, Wu J J et al. Synthesizing 3D shapes via modeling multi-view depth maps and silhouettes with deep generative networks[C], 2511-2519(2017).

    [8] Eigen D, Puhrsch C, Fergus R. Depth map prediction from a single image using a multi-scale deep network[C], 2366-2374(2014).

    [9] Wang N, Zhang Y, Li Z et al. Pixel2mesh: generating 3D mesh models from single RGB images[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 111215, 55-71(2018).

    [10] Qi C R, Su H, Nießner M et al. Volumetric and multi-view CNNs for object classification on 3D data[C], 5648-5656(2016).

    [11] Liu Z J, Tang H T, Lin Y J et al. Point-voxel CNN for efficient 3D deep learning[EB/OL]. https://arxiv.org/abs/1907.03739

    [12] Wang X G, Ang M H, Lee G H. Cascaded refinement network for point cloud completion[C], 787-796(2020).

    [13] Yuan W T, Khot T, Held D et al. PCN: point completion network[C], 728-737(2018).

    [14] Liu M H, Sheng L, Yang S et al. Morphing and sampling network for dense point cloud completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 11596-11603(2020).

    [15] Lin Z H, Feng M W, Santos C N D et al. A structured self-attentive sentence embedding[EB/OL]. https://arxiv.org/abs/1703.03130

    [16] Vaswani A, Shazeer N, Parmar N et al. Attention is all you need[EB/OL]. https://arxiv.org/abs/1706.03762

    [17] Carion N, Massa F, Synnaeve G et al. End-to-end object detection with transformers[EB/OL]. https://arxiv.org/abs/2005.12872

    [18] Liu R J, Yuan Z J, Liu T et al. End-to-end lane shape prediction with transformers[C], 3693-3701(2021).

    [19] Engel N, Belagiannis V, Dietmayer K. Point transformer[J]. IEEE Access, 9, 134826-134840(2021).

    [20] Guo M H, Cai J X, Liu Z N et al. PCT: point cloud transformer[J]. Computational Visual Media, 7, 187-199(2021).

    [21] Charles R Q, Hao S, Mo K C et al. PointNet: deep learning on point sets for 3D classification and segmentation[C], 77-85(2017).

    [22] Qi C R, Yi L, Su H et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[EB/OL]. https://arxiv.org/abs/1706.02413

    [23] Rubner Y, Tomasi C, Guibas L J. The earth mover’s distance as a metric for image retrieval[J]. International Journal of Computer Vision, 40, 99-121(2000).

    [24] Borgefors G. Hierarchical chamfer matching: a parametric edge matching algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, 849-865(1988).

    [25] Wu Z R, Song S R, Khosla A et al. 3D ShapeNets: a deep representation for volumetric shapes[C], 1912-1920(2015).

    [26] Mendoza A, Apaza A, Sipiran I et al. Refinement of predicted missing parts enhance point cloud completion[EB/OL]. https://arxiv.org/abs/2010.04278

    Hui Gao, Zhijing Yang, Wing-Kuen Ling, Jiangzhong Cao, Weijie Li. Point Cloud Completion Network Based on Multiencoders and Residual-Transformer[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210012
    Download Citation