• Advanced Photonics Nexus
  • Vol. 2, Issue 5, 056003 (2023)
Zhiyong Wu1,2 and Zhengji Xu1,2,*
Author Affiliations
  • 1Sun Yat-sen University, School of Microelectronics Science and Technology, Zhuhai, China
  • 2Sun Yat-sen University, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Zhuhai, China
  • show less
    DOI: 10.1117/1.APN.2.5.056003 Cite this Article Set citation alerts
    Zhiyong Wu, Zhengji Xu, "Achromatic on-chip focusing of graphene plasmons for spatial inversions of broadband digital optical signals," Adv. Photon. Nexus 2, 056003 (2023) Copy Citation Text show less
    References

    [1] A. H. Atabaki et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 556, 349-354(2018).

    [2] X. Liu et al. Ultra-broadband and low-loss edge coupler for highly efficient second harmonic generation in thin-film lithium niobate. Adv. Photonics Nexus, 1, 016001(2022).

    [3] M. Zhang et al. Supercompact photonic quantum logic gate on a silicon chip. Phys. Rev. Lett., 126, 130501(2021).

    [4] L.-T. Feng et al. Transverse mode-encoded quantum gate on a silicon photonic chip. Phys. Rev. Lett., 128, 060501(2022).

    [5] E. Mikheeva et al. Space and time modulations of light with metasurfaces: recent progress and future prospects. ACS Photonics, 9, 1458-1482(2022).

    [6] K. Wang et al. Deep learning spatial phase unwrapping: a comparative review. Adv. Photonics Nexus, 1, 014001(2022).

    [7] J. Feldmann et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [8] Q. He et al. Monolithic metasurface spatial differentiator enabled by asymmetric photonic spin-orbit interactions. Nanophotonics, 10, 741-748(2021).

    [9] X. Luo. Multiscale optical field manipulation via planar digital optics. ACS Photonics(2023).

    [10] X. Luo. Metasurface waves in digital optics. J. Phys.: Photonics, 2, 041003(2020).

    [11] J. M. Luque-González et al. An ultracompact GRIN-lens-based spot size converter using subwavelength grating metamaterials. Laser Photonics Rev., 13, 1900172(2019).

    [12] J. Shen et al. Ultra-broadband on-chip beam focusing enabled by GRIN metalens on silicon-on-insulator platform. Nanophotonics, 11, 3603-3612(2022).

    [13] Y. Zhang et al. Ultra-broadband mode size converter using on-chip metamaterial-based Luneburg lens. ACS Photonics, 8, 202-208(2020).

    [14] W. Qi, Y. Yu, X. Zhang. On-chip arbitrary-mode spot size conversion. Nanophotonics, 9, 4365-4372(2020).

    [15] S. Hadi Badri, M. M. Gilarlue. Low-index-contrast waveguide bend based on truncated Eaton lens implemented by graded photonic crystals. J. Opt. Soc. Am. B, 36, 1288-1293(2019).

    [16] S. Hadi Badri, H. Rasooli Saghai, H. Soofi. Polymer multimode waveguide bend based on a multilayered Eaton lens. Appl. Opt., 58, 5219-5224(2019).

    [17] S. Li et al. Universal multimode waveguide crossing based on transformation optics. Optica, 5, 1549-1556(2018).

    [18] H. Xu, Y. Shi. Metamaterial-based Maxwell’s fisheye lens for multimode waveguide crossing. Laser Photonics Rev., 12, 1800094(2018).

    [19] L. N. Quan et al. Nanowires for photonics. Chem. Rev., 119, 9153-9169(2019).

    [20] A. Karabchevsky et al. On-chip nanophotonics and future challenges. Nanophotonics, 9, 3733-3753(2020).

    [21] F. J. Garcia-Vidal et al. Spoof surface plasmon photonics. Rev. Mod. Phys., 94, 025004(2022).

    [22] E. Prinz et al. Functional meta lenses for compound plasmonic vortex field generation and control. Nano Lett., 21, 3941-3946(2021).

    [23] J. Ye, Y. Li, S. Qu. On-chip orbital angular momentum sorting with a surface plasmon polariton lens. J. Lightwave Technol., 39, 1423-1428(2021).

    [24] L. Verslegers et al. Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array. Phys. Rev. Lett., 103, 033902(2009).

    [25] Y. Jiao et al. Self-focusing and self-bending of surface plasmons in longitudinally modulated metasurfaces. Opt. Commun., 450, 136-140(2019).

    [26] Y. Wang et al. Spatiotemporal manipulation on focusing and propagation of surface plasmon polariton pulses. Opt. Express, 28, 33516-33527(2020).

    [27] Y. Wang et al. Drawing structured plasmonic field with on-chip metalens. Nanophotonics, 11, 1969-1976(2022).

    [28] W. Liu et al. Polychromatic nanofocusing of surface plasmon polaritons. Phys. Rev. B, 83, 073404(2011).

    [29] Z. Fei et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 487, 82-85(2012).

    [30] P. A. D. Gonalves, N. M. R. Peres. An Introduction to Graphene Plasmonics(2016).

    [31] Q. Guo et al. Infrared nanophotonics based on graphene plasmonics. ACS Photonics, 4, 2989-2999(2017).

    [32] T. Nagatsuma, G. Ducournau, C. C. Renaud. Advances in terahertz communications accelerated by photonics. Nat. Photonics, 10, 371-379(2016).

    [33] Y. Yang et al. Terahertz topological photonics for on-chip communication. Nat. Photonics, 14, 446-451(2020).

    [34] J. Nong et al. Enhanced graphene plasmonic mode energy for highly sensitive molecular fingerprint retrieval. Laser Photonics Rev., 15, 2000300(2021).

    [35] M. B. Lundeberg et al. Thermoelectric detection and imaging of propagating grapheme plasmons. Nat. Mater., 16, 204-207(2017).

    [36] A. Woessner et al. Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons. Nat. Photonics, 11, 421-424(2017). https://doi.org/10.1038/nphoton.2017.98

    [37] L. Lu et al. Dynamically controlled nanofocusing metalens based on graphene-loaded aperiodic silica grating arrays. Opt. Express, 30, 5304-5313(2022).

    [38] P. Alonso-González et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol., 12, 31-35(2017).

    [39] P. A. D. Gonçalves et al. Strong light–matter interactions enabled by polaritons in atomically thin materials. Adv. Opt. Mater., 8, 1901473(2020).

    [40] T. G. Rappoport et al. Topological graphene plasmons in a plasmonic realization of the Su–Schrieffer–Heeger model. ACS Photonics, 8, 1817-1823(2021).

    [41] I.-H. Lee et al. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol., 14, 313-319(2019).

    [42] I. Epstein et al. Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science, 368, 1219-1223(2020).

    [43] X. Wang et al. Self-focusing and the Talbot effect in conformal transformation optics. Phys. Rev. Lett., 119, 033902(2017).

    [44] J. Chen et al. Conformally mapped Mikaelian lens for broadband achromatic high resolution focusing. Laser Photonics Rev., 15, 2000564(2021).

    [45] G. B. Hocker, W. K. Burns. Mode dispersion in diffused channel waveguides by the effective index method. Appl. Opt., 16, 113-118(1977).

    [46] H. G. Unger. Planar Optical Waveguides and Fibres(1977).

    [47] A. Yariv, P. Yeh. Photonics: Optical Electronics in Modern Communications(2007).

    [48] Z. Zhang et al. Nonparaxial mode-size converter using an ultracompact metamaterial Mikaelian lens. J. Lightwave Technol., 39, 2077-2083(2021).

    [49] C. Zeng et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron. Adv., 5, 200098(2022).

    [50] H. Hu et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat. Commun., 7, 12334(2016).

    [51] W. Gao et al. Excitation and active control of propagating surface plasmon polaritons in grapheme. Nano Lett., 13, 3698-3702(2013).

    [52] F. Lu et al. Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip. Opto-Electron. Adv., 1, 180010(2018).

    [53] B. C. Kress, P. Meyrueis. Applied Digital Optics(2009).

    [54] M. A. Ordal et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt., 24, 4493-4499(1985).

    [55] T. G. Rappoport et al. Understanding the electromagnetic response of graphene/metallic nanostructures hybrids of different dimensionality. ACS Photonics, 7, 2302-2308(2020).

    [56] S. H. Park et al. Accessing the exceptional points in a graphene plasmon–vibrational mode coupled system. ACS Photonics, 8, 3241-3248(2021).

    Zhiyong Wu, Zhengji Xu, "Achromatic on-chip focusing of graphene plasmons for spatial inversions of broadband digital optical signals," Adv. Photon. Nexus 2, 056003 (2023)
    Download Citation