• Acta Optica Sinica
  • Vol. 45, Issue 6, 0628011 (2025)
Zhihua Wang, Daoqi Wang, Haotian Li, Chuanhang Wu..., Jiarui Su, Kuijun Wu and Weiwei He*|Show fewer author(s)
Author Affiliations
  • School of Physics and Electronic Information, Yantai University, Yantai 264005, Shandong , China
  • show less
    DOI: 10.3788/AOS241376 Cite this Article Set citation alerts
    Zhihua Wang, Daoqi Wang, Haotian Li, Chuanhang Wu, Jiarui Su, Kuijun Wu, Weiwei He. Retrieval of Mesospheric Ozone Profiles Based on Airglow Radiation in O2 Infrared Atmospheric Band[J]. Acta Optica Sinica, 2025, 45(6): 0628011 Copy Citation Text show less
    References

    [1] Martyshenko K V, Yankovsky V A. IR band of O2 at 1.27 μm as the tracer of O3 in the mesosphere and lower thermosphere: correction of the method[J]. Geomagnetism and Aeronomy, 57, 229-241(2017).

    [2] Yankovsky V A, Kuleshova V A, Manuilova R O et al. Retrieval of total ozone in the mesosphere with a new model of electronic-vibrational kinetics of O3 and O2 photolysis products[J]. Izvestiya, Atmospheric and Oceanic Physics, 43, 514-525(2007).

    [3] Mlynczak M G, Marshall B T, Martin-Torres F J et al. Sounding of the atmosphere using broadband emission radiometry observations of daytime mesospheric O2(1Δ) 1.27 μm emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates[J]. Journal of Geophysical Research: Atmospheres, 112, D15306(2007).

    [4] Mlynczak M G, Morgan F, Yee J H et al. Simultaneous measurements of the O2(¹Δ) and O2(¹∑) airglows and ozone in the daytime mesosphere[J]. Geophysical Research Letters, 28, 999-1002(2001).

    [5] Jia P C, Cao N W, Fan G Q et al. Differential absorption lidar monitoring of heavy pollution process[J]. Laser & Optoelectronics Progress, 58, 0901002(2021).

    [6] Hu S X, Hu H L, Wu Y H et al. L625 differential absorption lidar system for tropospheric ozone measurements[J]. Acta Optica Sinica, 24, 597-601(2004).

    [7] Huang J, Huang Y B, Lu X J et al. Measurement and concentration inversion of ozone in Golmud by laser heterodyne spectrometer[J]. Acta Photonica Sinica, 50, 0401002(2021).

    [8] Cao X F, Li X Y, Luo Q et al. Review of temperature profile inversion of satellite-borne infrared hyperspectral sensors[J]. National Remote Sensing Bulletin, 25, 577-598(2021).

    [9] Brühl C, Drayson S R, Russell J M III et al. Halogen occultation experiment ozone channel validation[J]. Journal of Geophysical Research: Atmospheres, 101, 10217-10240(1996).

    [10] Huang F X, Huang Y, Lawrence E F et al. Radiometric calibration of the solar backscatter ultraviolet sounder and validation of ozone profile retrievals[J]. Advances in Meteorological Science and Technology, 3, 108-115(2013).

    [11] Chi Y L, Zhao C F. Progress and challenges of ozone satellite remote sensing inversion[J]. Acta Optica Sinica, 43, 1899905(2023).

    [12] Bertaux J L, Hauchecorne A, Lefèvre F et al. The use of the 1.27 µm O2 absorption band for greenhouse gas monitoring from space and application to MicroCarb[J]. Atmospheric Measurement Techniques, 13, 3329-3374(2020).

    [13] Yankovsky V A, Martyshenko K V, Manuilova R O et al. Oxygen dayglow emissions as proxies for atomic oxygen and ozone in the mesosphere and lower thermosphere[J]. Journal of Molecular Spectroscopy, 327, 209-231(2016).

    [14] Sun K, Yousefi M, Chan Miller C et al. An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations[J]. Atmospheric Measurement Techniques, 15, 3721-3745(2022).

    [15] He W W, Wu K J, Feng Y T et al. The near-space wind and temperature sensing interferometer: forward model and measurement simulation[J]. Remote Sensing, 11, 914(2019).

    [16] Wang D Q, Wang H M, He W W et al. Radiative transfer characteristics of the 1.27 μm O2(a1Δg) airglow in limb-viewing[J]. Spectroscopy and Spectral Analysis, 44, 1088-1097(2024).

    [17] McDade I C, Murtagh D P, Greer R G H et al. ETON 2: quenching parameters for the proposed precursors of O2(b1∑g+) and O(1S) in the terrestrial nightglow[J]. Planetary and Space Science, 34, 789-800(1986).

    [18] Li A Q, Roth C Z, Pérot K et al. Retrieval of daytime mesospheric ozone using OSIRIS observations of O2(a1Δg) emission[J]. Atmospheric Measurement Techniques, 13, 6215-6236(2020).

    [19] Wu K J, Wang Z H, Wang D Q et al. Joint retrieval of near space temperature profiles based on the atmospheric and near-infrared atmospheric bands of O2 airglow[J]. Chinese Journal of Geophysics, 67, 3265-3276(2024).

    [20] Wiensz J T. Ozone retrievals from the oxygen infrared channels of the OSIRIS infrared imager[D], 22-38(2005).

    [21] He W W, Wu K J, Feng Y T et al. The radiative transfer characteristics of the O2 infrared atmospheric band in limb-viewing geometry[J]. Remote Sensing, 11, 2702(2019).

    [22] Gordon I E, Rothman L S, Hargreaves R J et al. The HITRAN2020 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 277, 107949(2022).

    [23] Emmert J T, Drob D P, Picone J M et al. NRLMSIS 2.0: a whole atmosphere empirical model of temperature and neutral species densities[J]. Earth and Space Science, 8, e01321(2021).

    [24] Sun K, Gordon I E, Sioris C E et al. Reevaluating the use of O2a1Δg band in spaceborne remote sensing of greenhouse gases[J]. Geophysical Research Letters, 45, 5779-5787(2018).

    [25] Zarboo A, Bender S, Burrows J P et al. Retrieval of O2(1∑) and O2(1Δ) volume emission rates in the mesosphere and lower thermosphere using SCIAMACHY MLT limb scans[J]. Atmospheric Measurement Techniques, 11, 473-487(2018).

    [26] Wu K J, He W W, Feng Y T et al. Effect of OH emission on the temperature and wind measurements derived from limb-viewing observations of the 1.27 µm O2 dayglow[J]. Atmospheric Measurement Techniques, 13, 1817-1824(2020).

    [27] Harding B J, Makela J J, Englert C R et al. The MIGHTI wind retrieval algorithm: description and verification[J]. Space Science Reviews, 212, 585-600(2017).

    [28] Zhang S M, Wu X C, Sun M C et al. Using onion-peeling method to inverse ozone density based on the stellar occultation technology in the near space region[J]. Spectroscopy and Spectral Analysis, 42, 203-209(2022).

    [29] Kuttippurath J, Bremer H, Burrows J et al. Intercomparison of ozone profile measurements from ASUR, SCIAMACHY, MIPAS, OSIRIS, and SMR[J]. Journal of Geophysical Research: Atmospheres, 112, JD007830(2007).

    [30] Shen J, Cao N W, Lu X L et al. Inversion and analysis of ozone concentration using ultraviolet multi-wavelength lidar[J]. Chinese Journal of Lasers, 51, 1411001(2024).

    Zhihua Wang, Daoqi Wang, Haotian Li, Chuanhang Wu, Jiarui Su, Kuijun Wu, Weiwei He. Retrieval of Mesospheric Ozone Profiles Based on Airglow Radiation in O2 Infrared Atmospheric Band[J]. Acta Optica Sinica, 2025, 45(6): 0628011
    Download Citation