[1] Martyshenko K V, Yankovsky V A. IR band of O2 at 1.27 μm as the tracer of O3 in the mesosphere and lower thermosphere: correction of the method[J]. Geomagnetism and Aeronomy, 57, 229-241(2017).
[2] Yankovsky V A, Kuleshova V A, Manuilova R O et al. Retrieval of total ozone in the mesosphere with a new model of electronic-vibrational kinetics of O3 and O2 photolysis products[J]. Izvestiya, Atmospheric and Oceanic Physics, 43, 514-525(2007).
[3] Mlynczak M G, Marshall B T, Martin-Torres F J et al. Sounding of the atmosphere using broadband emission radiometry observations of daytime mesospheric O2(1Δ) 1.27 μm emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates[J]. Journal of Geophysical Research: Atmospheres, 112, D15306(2007).
[4] Mlynczak M G, Morgan F, Yee J H et al. Simultaneous measurements of the O2(¹Δ) and O2(¹∑) airglows and ozone in the daytime mesosphere[J]. Geophysical Research Letters, 28, 999-1002(2001).
[5] Jia P C, Cao N W, Fan G Q et al. Differential absorption lidar monitoring of heavy pollution process[J]. Laser & Optoelectronics Progress, 58, 0901002(2021).
[6] Hu S X, Hu H L, Wu Y H et al. L625 differential absorption lidar system for tropospheric ozone measurements[J]. Acta Optica Sinica, 24, 597-601(2004).
[7] Huang J, Huang Y B, Lu X J et al. Measurement and concentration inversion of ozone in Golmud by laser heterodyne spectrometer[J]. Acta Photonica Sinica, 50, 0401002(2021).
[8] Cao X F, Li X Y, Luo Q et al. Review of temperature profile inversion of satellite-borne infrared hyperspectral sensors[J]. National Remote Sensing Bulletin, 25, 577-598(2021).
[9] Brühl C, Drayson S R, Russell J M III et al. Halogen occultation experiment ozone channel validation[J]. Journal of Geophysical Research: Atmospheres, 101, 10217-10240(1996).
[10] Huang F X, Huang Y, Lawrence E F et al. Radiometric calibration of the solar backscatter ultraviolet sounder and validation of ozone profile retrievals[J]. Advances in Meteorological Science and Technology, 3, 108-115(2013).
[11] Chi Y L, Zhao C F. Progress and challenges of ozone satellite remote sensing inversion[J]. Acta Optica Sinica, 43, 1899905(2023).
[12] Bertaux J L, Hauchecorne A, Lefèvre F et al. The use of the 1.27 µm O2 absorption band for greenhouse gas monitoring from space and application to MicroCarb[J]. Atmospheric Measurement Techniques, 13, 3329-3374(2020).
[13] Yankovsky V A, Martyshenko K V, Manuilova R O et al. Oxygen dayglow emissions as proxies for atomic oxygen and ozone in the mesosphere and lower thermosphere[J]. Journal of Molecular Spectroscopy, 327, 209-231(2016).
[14] Sun K, Yousefi M, Chan Miller C et al. An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations[J]. Atmospheric Measurement Techniques, 15, 3721-3745(2022).
[15] He W W, Wu K J, Feng Y T et al. The near-space wind and temperature sensing interferometer: forward model and measurement simulation[J]. Remote Sensing, 11, 914(2019).
[16] Wang D Q, Wang H M, He W W et al. Radiative transfer characteristics of the 1.27 μm O2(a1Δg) airglow in limb-viewing[J]. Spectroscopy and Spectral Analysis, 44, 1088-1097(2024).
[17] McDade I C, Murtagh D P, Greer R G H et al. ETON 2: quenching parameters for the proposed precursors of O2(b1∑g+) and O(1S) in the terrestrial nightglow[J]. Planetary and Space Science, 34, 789-800(1986).
[18] Li A Q, Roth C Z, Pérot K et al. Retrieval of daytime mesospheric ozone using OSIRIS observations of O2(a1Δg) emission[J]. Atmospheric Measurement Techniques, 13, 6215-6236(2020).
[19] Wu K J, Wang Z H, Wang D Q et al. Joint retrieval of near space temperature profiles based on the atmospheric and near-infrared atmospheric bands of O2 airglow[J]. Chinese Journal of Geophysics, 67, 3265-3276(2024).
[20] Wiensz J T. Ozone retrievals from the oxygen infrared channels of the OSIRIS infrared imager[D], 22-38(2005).
[21] He W W, Wu K J, Feng Y T et al. The radiative transfer characteristics of the O2 infrared atmospheric band in limb-viewing geometry[J]. Remote Sensing, 11, 2702(2019).
[22] Gordon I E, Rothman L S, Hargreaves R J et al. The HITRAN2020 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 277, 107949(2022).
[23] Emmert J T, Drob D P, Picone J M et al. NRLMSIS 2.0: a whole atmosphere empirical model of temperature and neutral species densities[J]. Earth and Space Science, 8, e01321(2021).
[24] Sun K, Gordon I E, Sioris C E et al. Reevaluating the use of O2a1Δg band in spaceborne remote sensing of greenhouse gases[J]. Geophysical Research Letters, 45, 5779-5787(2018).
[25] Zarboo A, Bender S, Burrows J P et al. Retrieval of O2(1∑) and O2(1Δ) volume emission rates in the mesosphere and lower thermosphere using SCIAMACHY MLT limb scans[J]. Atmospheric Measurement Techniques, 11, 473-487(2018).
[26] Wu K J, He W W, Feng Y T et al. Effect of OH emission on the temperature and wind measurements derived from limb-viewing observations of the 1.27 µm O2 dayglow[J]. Atmospheric Measurement Techniques, 13, 1817-1824(2020).
[27] Harding B J, Makela J J, Englert C R et al. The MIGHTI wind retrieval algorithm: description and verification[J]. Space Science Reviews, 212, 585-600(2017).
[28] Zhang S M, Wu X C, Sun M C et al. Using onion-peeling method to inverse ozone density based on the stellar occultation technology in the near space region[J]. Spectroscopy and Spectral Analysis, 42, 203-209(2022).
[29] Kuttippurath J, Bremer H, Burrows J et al. Intercomparison of ozone profile measurements from ASUR, SCIAMACHY, MIPAS, OSIRIS, and SMR[J]. Journal of Geophysical Research: Atmospheres, 112, JD007830(2007).
[30] Shen J, Cao N W, Lu X L et al. Inversion and analysis of ozone concentration using ultraviolet multi-wavelength lidar[J]. Chinese Journal of Lasers, 51, 1411001(2024).