• Advanced Photonics Nexus
  • Vol. 3, Issue 6, 066003 (2024)
Chenxiao Lin, Yifan Wang, and Yidong Tan*
Author Affiliations
  • Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China
  • show less
    DOI: 10.1117/1.APN.3.6.066003 Cite this Article Set citation alerts
    Chenxiao Lin, Yifan Wang, Yidong Tan, "High precision and sensitivity anti-interference 3D coherent ranging based on dual reversely chirped self-mixing lasers," Adv. Photon. Nexus 3, 066003 (2024) Copy Citation Text show less
    References

    [1] C. Urmson et al. Autonomous driving in urban environments: boss and the urban challenge. J. Field Rob., 25, 425-466(2008).

    [2] M. Elbakary et al. Aerosol tracking using lidar-based atmospheric profiling and Bayesian estimation. Opt. Laser Technol., 128, 106248(2020).

    [3] S. F. Yu et al. Photon-counting distributed free-space spectroscopy. Light: Sci. Appl., 10, 212(2021).

    [4] R. R. Wang et al. Simultaneous time-varying vibration and nonlinearity compensation for one-period triangular-FMCW Lidar signal. Remote Sens., 13, 1731(2021).

    [5] B Schwarz. LIDAR: mapping the world in 3D. Nat. Photonics, 4, 429-430(2010).

    [6] R. Agishev et al. Range-resolved pulsed and CWFM lidars: potential capabilities comparison. Appl. Phys. B, 85, 149-162(2006).

    [7] R. K. Ula, Y. Noguchi, K. Liyama. Three-dimensional object profiling using highly accurate FMCW optical ranging system. J. Lightwave Technol., 37, 3826-3833(2020).

    [8] A. Martin et al. Photonic integrated circuit-based FMCW coherent LiDAR. J. Lightwave Technol., 36, 4640-4645(2018).

    [9] B. Behroozpour et al. Electronic-photonic integrated circuit for 3D microimaging. J. Solid-State Circuits, 52, 161-172(2017).

    [10] N. Satyan et al. Precise control of broadband frequency chirps using optoelectronic feedback. Opt. Express, 17, 15991-15999(2009).

    [11] Z. Ahmad et al. High-power and high-responsivity avalanche photodiodes for self-heterodyne FMCW lidar system applications. IEEE Access, 9, 85661-85671(2021).

    [12] C. Lu, Z. H. Yu, G. D. Liu. A high-precision range extraction method using an FM nonlinear kernel function for DFB-array-based FMCW lidar. Opt. Commun., 504, 127469(2022).

    [13] C. L. Li, F. M. Zhang, X. H. Qu. High-resolution frequency-modulated continuous-wave LiDAR using multiple laser sources simultaneously scanning. J. Lightwave Technol., 41, 367-373(2023).

    [14] T. Dilazaro, G. Nehmetallah. Large-volume, low-cost, high-precision FMCW tomography using stitched DFBs. Opt. Express, 26, 2891-2904(2018).

    [15] C. Lu et al. FSI-based non-cooperative target absolute distance measurement method using PLL correction for the influence of nonlinear clock. Opt. Lett., 43, 2098-2101(2018).

    [16] Y. F. Wang et al. Frequency-swept feedback interferometry for noncooperative-target ranging with a stand-off distance of several hundred meters. PhotoniX, 3, 21(2022).

    [17] X. S. Zhang, J. Pouls, M. C. Wu. Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR. Opt. Express, 27, 9965-9974(2019).

    [18] B. Wang et al. Millimeter-resolution long-range OFDR using Xultra-linearly 100 GHz-swept optical source realized by injection-locking technique and cascaded FWM process. Opt. Express, 25, 3514-3524(2017).

    [19] Y. N. Zhi et al. Symmetrical dual-sideband oppositely chirped differential FMCW LiDAR. Opt. Express, 31, 38114-38131(2023).

    [20] F. M. Zhang et al. Vibration compensation of the frequency-scanning-interferometry-based absolute ranging system. Appl. Sci., 9, 147(2019).

    [21] C. Lu et al. Absolute distance measurement system with micron-grade measurement uncertainty and 24 m range using frequency scanning interferometry with compensation of environment vibration. Opt. Express, 24, 30215-30224(2016).

    [22] S. Kakuma, Y. Katase. Frequency scanning interferometry immune to length drift using a pair of vertical-cavity surface-emitting laser diodes. Opt. Rev., 19, 376-380(2012).

    [23] R. R. Wang et al. Time-varying vibration compensation based on segmented interference for triangular FMCW LiDAR signals. Remote. Sens., 13, 3803-3825(2021).

    [24] R. R. Wang et al. Vibration compensation method based on instantaneous ranging model for triangular FMCW lidar signals. Opt. Express, 11, 15918-15939(2021).

    [25] Y. G. Dong et al. Frequency-modulated continuous-wave LIDAR and 3D imaging using linear frequency modulation based on injection locking. J. Lightwave Technol., 39, 3826-3833(2021).

    [26] L. W. Tang et al. Hybrid integrated ultralow-linewidth and fast-chirped laser for FMCW LiDAR. Opt. Express, 30, 30420-30429(2022).

    [27] T. Hariyama et al. High-accuracy range-sensing system based on FMCW using low-cost VCSEL. Opt. Express, 26, 9285-9297(2018).

    [28] E. Baumann et al. Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance. Opt. Express, 22, 24914-24928(2014).

    [29] H. Pan, X. H. Qu, F. M. Zhang. Micron-precision measurement using a combined frequency-modulated continuous wave lidar autofocusing system at 60 meters standoff distance. Opt. Express, 26, 15186-15198(2018).

    [30] E. Moore, R. Mcleod. Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry. Opt. Express, 16, 13139-13149(2008).

    [31] A. R. Peter et al. Ultrabroadband optical chirp linearization for precision metrology applications. Opt. Lett., 34, 3692-3694(2009).

    [32] F. Ito, X. Fan, Y Koshikiya. Long-range coherent OFDR with light source phase noise compensation. J. Lightwave Technol., 30, 1015-1024(2012).

    [33] X. Y. Fan, Y. Koshikiya, F. Ito. Phase-noise-compensated optical frequency-domain reflectometry. J. Lightwave Technol., 45, 594-602(2009).

    [34] W. H. Yu et al. Comb-calibrated frequency sweeping interferometry for absolute distance and vibration measurement. Opt. Lett., 44, 5069-5072(2019).

    [35] E. Baumann et al. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements. Opt. Lett., 38, 2026-2028(2013).

    [36] K Otsuka. Effects of external perturbations on LiNdP4O12 lasers. J. Quantum Electron., 15, 655-663(1979). https://doi.org/10.1109/JQE.1979.1070053

    [37] O. Hugon, E. Lacot, F. Stoeckel. Submicrometric displacement and vibration measurement using optical feedback in a fiber laser. Fiber Integr. Opt., 22, 283-288(2003).

    [38] E. Lacot, R. Day, F. Stoeckel. Laser optical feedback tomography. Opt. Lett., 24, 744-746(1999).

    [39] E. Lacot, R. Day, F. Stoeckel. Coherent laser detection by frequency-shifted optical feedback. Phys. Rev. A, 64, 43815-43825(2001).

    [40] K Otsuka. Self-mixing thin-slice solid-state laser metrology. Sensors, 11, 2195-2245(2011).

    [41] Y. Y. Zhao et al. Coherent laser detection of femtowatt-level frequency-shifted optical feedback based on a DFB fiber laser. Opt. Lett., 46, 1229-1232(2021).

    [42] Z. R. Dai et al. Surface plasmon resonance biosensor with laser heterodyne feedback for highly-sensitive and rapid detection of COVID-19 spike antigen. Biosens. Bioelectron., 206, 114163-114168(2022).

    [43] J. S. Tian et al. Ultrasensitive screening of endocrine-disrupting chemicals using a surface plasmon resonance biosensor with polarization-compensated laser heterodyne feedback. Anal. Chem., 95, 8687-8695(2023).

    [44] X. Xu, Z. R. Dai, Y. D. Tan. A dual-beam differential method based on feedback interferometry for noncontact measurement of linear and angular displacement. Trans. Ind. Electron., 70, 6405-6413(2023).

    [45] X. J. Wan, D. Li, S. L. Zhang. Quasi-common-path laser feedback interferometry based on frequency shifting and multiplexing. Opt. Lett., 32, 367-369(2007).

    [46] Z. G. Zhao et al. Narrow laser-linewidth measurement using short delay self-heterodyne interferometry. Opt. Express, 30, 30600-30610(2022).

    [47] E. Fomiryakov et al. New approach to laser characterization using delayed self-heterodyne interferometry. J. Lightwave Technol., 39, 5191-5196(2021).

    [48] Z. Wang et al. Cubic meter volume optical coherence tomography. Optica, 3, 1496-1503(2016).

    [49] Y. F. Wang et al. Laser feedback frequency-modulated continuous-wave LiDAR and 3-D imaging. IEEE Trans. Instrum. Meas., 72, 7002309(2023).

    [50] S. M. Li et al. Chip‐based microwave‐photonic radar for high‐resolution imaging. Laser Photonics Rev., 14, 1900239(2020).

    [51] B. Behroozpour et al. Lidar system architectures and circuits. IEEE Commun. Mag., 55, 135-142(2017).

    [52] X. Y. Jia et al. Frequency-scanning interferometry using a time-varying Kalman filter for dynamic tracking measurements. Opt. Express, 25, 25782-25796(2017).

    [53] Z. A. Wang et al. Frequency-scanning interferometry for dynamic measurement using adaptive Sage-Husa Kalman filter. Opt. Lasers Eng., 165, 107545-107557(2023).

    [54] C Lu et al. Method based on chirp decomposition for dispersion mismatch compensation in precision absolute distance measurement using swept-wavelength interferometry. Opt. Express, 23, 31662-31671(2015).

    Chenxiao Lin, Yifan Wang, Yidong Tan, "High precision and sensitivity anti-interference 3D coherent ranging based on dual reversely chirped self-mixing lasers," Adv. Photon. Nexus 3, 066003 (2024)
    Download Citation