[1] Durante M, Bräuer-Krisch E, Hill M. Faster and safer? FLASH ultra-high dose rate in radiotherapy[J]. British Journal of Radiology, 91, 20170628(2018).
[2] Favaudon V, Caplier L, Monceau V et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice[J]. Science Translational Medicine, 6, 245ra93(2014).
[3] Lin Binwei, Gao Feng, Yang Yiwei et al. FLASH radiotherapy: history and future[J]. Frontiers in Oncology, 11, 644400(2021).
[4] Lempart M, Blad B, Adrian G et al. Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation[J]. Radiotherapy and Oncology, 139, 40-45(2019).
[5] Schüler E, Trovati S, King G et al. Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator[J]. International Journal of Radiation Oncology·Biology·Physics, 97, 195-203(2017).
[6] Lansonneur P, Favaudon V, Heinrich S et al. Simulation and experimental validation of a prototype electron beam linear accelerator for preclinical studies[J]. Physica Medica, 60, 50-57(2019).
[7] Mcmanus M, Romano F, Lee N D et al. The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate very high energy electron beams[J]. Scientific Reports, 10, 9089(2020).
[8] Burns D T, McEwen M R. Ion recombination corrections for the NACP parallel-plate chamber in a pulsed electron beam[J]. Physics in Medicine & Biology, 43, 2033-2045(1998).
[9] Karsch L, Beyreuther E, Burris-Mog T et al. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors[J]. Medical Physics, 39, 2447-2455(2012).
[10] Jaccard M, Petersson K, Buchillier T et al. High dose-per-pulse electron beam dosimetry: usability and dose-rate independence of EBT3 Gafchromic films[J]. Medical Physics, 44, 725-735(2017).
[11] Gao Feng, Yang Yiwei, Zhu Hongyu et al. First demonstration of the FLASH effect with ultrahigh dose rate high-energy X-rays[J]. Radiotherapy and Oncology, 166, 44-50(2022).
[12] Shan Lijun, Zhou Zheng, Yang Yiwei. >80 Gy/s@1 m FLASH photon source at 10 MeV[J]. High Power Laser and Particle Beams, 35, 124009(2023).
[13] Robinson S M, Esplen N, Wells D et al. Monte Carlo simulations of EBT3 film dose deposition for percentage depth dose (PDD) curve evaluation[J]. Journal of Applied Clinical Medical Physics, 21, 314-324(2020).
[14] Guan Yonghong, Huang Jiaofeng, Liu Jin. Application of Monte Carlo technology to fast dose calculation of radiation therapy[J]. High Power Laser and Particle Beams, 25, 193-195(2013).
[15] Song Ting, Zhou Linghong. Dose calculation of 6 MV Truebeam using Monte Carlo method[J]. High Power Laser and Particle Beams, 24, 2975-2978(2012).
[16] Musolino S V. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water; Technical reports series No. 398[J]. Health Physics, 81, 592-593(2001).
[17] Shalek R J. Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures[J]. Medical Physics, 4, 461(1977).
[18] Gerbi B J, Kirova Y M, ecchia R. Clinical applications of highenergy electrons[M]Levitt S H, Purdy J A, Perez C A, et al. Technical basis of radiation therapy: Practical clinical applications. 5th ed. Berlin: Springer, 2012: 157196.
[19] Khan F M, Doppke K P, Hogstrom K R et al. Clinical electron-beam dosimetry: Report of AAPM radiation therapy committee task group No. 25[J]. Medical Physics, 18, 73-109(1991).
[20] Ibbott G S. Radiation dosimetry: Electron beams with energies between 1 and 50 MeV (ICRU report No. 35)[J]. Medical Physics, 12, 813(1985).
[21] Khan F M, Higgins P D, Gerbi B J et al. Calculation of depth dose and dose per monitor unit for irregularly shaped electron fields[J]. Physics in Medicine & Biology, 43, 2741-2754(1998).