• Advanced Photonics Nexus
  • Vol. 3, Issue 1, 016007 (2024)
Aiqiang Nie1, Xiaoyong He2,*, and Wenhan Cao1,3,*
Author Affiliations
  • 1ShanghaiTech University, School of Information Science and Technology, Shanghai, China
  • 2Shanghai Normal University, Mathematics and Science College, Department of Physics, Shanghai, China
  • 3Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China
  • show less
    DOI: 10.1117/1.APN.3.1.016007 Cite this Article Set citation alerts
    Aiqiang Nie, Xiaoyong He, Wenhan Cao, "Carbon-based ultrabroadband tunable terahertz metasurface absorber," Adv. Photon. Nexus 3, 016007 (2024) Copy Citation Text show less
    References

    [1] P. H. Siegel. Terahertz technology. IEEE Trans. Microwave Theory Tech., 50, 910-928(2002).

    [2] J. F. Federici et al. THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol., 20, S266-S280(2005).

    [3] H.-J. Song, T. Nagatsuma. Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol., 1, 256-263(2011).

    [4] H.-B. Liu et al. Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE, 95, 1514-1527(2007).

    [5] C. Chen et al. Terahertz metamaterial absorbers. Adv. Mater. Technol., 7, 2101171(2021).

    [6] P. Gagnon et al. Double-walled carbon nanotube film as the active electrode in an electro-optical modulator for the mid-infrared and terahertz regions. J. Appl. Phys., 128, 233103(2020).

    [7] T. J. Cui et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Sci. Appl., 3, e218-e218(2014).

    [8] N. I. Zheludev, Y. S. Kivshar. From metamaterials to metadevices. Nat. Mater., 11, 917-924(2012).

    [9] C. Xu et al. Reconfigurable terahertz metamaterials: from fundamental principles to advanced 6G applications. iScience, 25, 103799(2022).

    [10] L. Qi, C. Li. Multi-band terahertz filter with independence to polarization and insensitivity to incidence angles. J. Infrared Millim. Terahertz Waves, 36, 1137-1144(2015).

    [11] H. Tao et al. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Opt. Express, 16, 7181-7188(2008).

    [12] R. M. H. Bilal et al. On the specially designed fractal metasurface-based dual-polarization converter in the THz regime. Results Phys., 19, 103358(2020).

    [13] W. Cai et al. Optical cloaking with metamaterials. Nat. Photonics, 1, 224-227(2007).

    [14] D. Ionescu, G. Apreotesei. Metamaterial optical filter with maximal absorption coefficient. MSE, 1182, 012031(2021).

    [15] N. I. Landy et al. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 207402(2008).

    [16] P. Yu et al. Broadband metamaterial absorbers. Adv. Opt. Mater., 7, 1800995(2018).

    [17] W. Li et al. Metamaterial absorbers: from tunable surface to structural transformation. Adv. Mater., 34, 2202509(2022).

    [18] B. Zhang, K.-D. Xu. Switchable and tunable bifunctional THz metamaterial absorber. J. Opt. Soc. Am. B, 39, A52-A60(2022).

    [19] N. Hu et al. Design of a multilayer broadband switchable absorber based on semiconductor switch. IEEE Antennas Wirel. Propag. Lett, 18, 373-377(2019).

    [20] A. Beheshti Asl et al. A perfect electrically tunable graphene-based metamaterial absorber. J. Comput. Electron., 20, 864-872(2021).

    [21] X. Liu et al. Ultra-wideband terahertz absorber based on metal–graphene hybrid structure. Mater. Today Commun., 34, 105185(2023).

    [22] J. Lan et al. Tunable broadband terahertz absorber based on laser-induced graphene. Chin. Opt. Lett., 20, 073701(2022).

    [23] J. Yang et al. Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure. Sci. Rep., 8, 3239(2018).

    [24] G. Wu et al. Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide. Opt. Express, 29, 2703-2711(2021).

    [25] Z. Liu et al. A VO2 film-based multifunctional metasurface in the terahertz band. Chin. Opt. Lett., 20, 013602(2022).

    [26] H. Liu et al. Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber. Sci. Rep., 9, 5751(2019).

    [27] N. L. D. Grischkowsky. Terahertz conductivity of thin metal films. Appl. Phys. Lett., 93, 051105(2008).

    [28] M. Walther et al. Terahertz conductivity of thin gold films at the metal-insulator percolation transition. Phys. Rev. B, 76, 125408(2007).

    [29] J. Lloyd-Hughes, T.-I. Jeon. A review of the terahertz conductivity of bulk and nano-materials. J. Infrared Millim. Terahertz Waves, 33, 871-925(2012).

    [30] K. S. Novoselov et al. A roadmap for graphene. Nature, 490, 192-200(2012).

    [31] A. Geim, K. Novoselov. The rise of graphene. Nat. Mater., 6, 183-191(2007).

    [32] F. Bonaccorso et al. Graphene photonics and optoelectronics. Nat. Photonics, 4, 611-622(2010).

    [33] A. Andryieuski, A. V. Lavrinenko. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt. Express, 21, 9144-9155(2013).

    [34] L. Liu, A. Das, C. M. Megaridis. Terahertz shielding of carbon nanomaterials and their composites – a review and applications. Carbon, 69, 1-16(2014).

    [35] Q. Xing et al. Tunable terahertz plasmons in graphite thin films. Phys. Rev. Lett., 126, 147401(2021).

    [36] G. Varshney. Wideband THz absorber: by merging the resonance of dielectric cavity and Graphite disk resonator. IEEE Sens. J., 21, 1635-1643(2021).

    [37] G. Varshney, R. R. Gupta, A. K. Sharma. Near-perfect ultrabroadband metal-free ultrathin THz absorber. J. Opt. Soc. Am. B, 40, 21-27(2022).

    [38] A. K. Soni, P. Giri, G. Varshney. Metal-free super-wideband THz absorber for electromagnetic shielding. Phys. Scr., 96, 125866(2021).

    [39] M. Rahmanzadeh, H. Rajabalipanah, A. Abdolali. Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers. Appl. Opt., 57, 959-968(2018).

    [40] P. Zhang et al. Ultra-broadband tunable terahertz metamaterial absorber based on double-layer vanadium dioxide square ring arrays. Micromachines, 13, 669(2022).

    [41] S. Zakir et al. Polarization-insensitive, broadband, and tunable terahertz absorber using slotted-square graphene meta-rings. IEEE Photonics J., 15, 1-8(2023).

    [42] P. Chamorro-Posada et al. THz TDS study of several sp2 carbon materials: graphite, needle coke and graphene oxides. Carbon, 98, 484-490(2016).

    [43] G. W. Hanson. Dyadic green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans. Antennas Propag., 56, 747-757(2008).

    [44] J. S. Gómez-Díaz, J. Perruisseau-Carrier. Graphene-based plasmonic switches at near infrared frequencies. Opt. Express, 21, 15490-15504(2013).

    [45] D. R. Smith et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E, 71, 036617(2005).

    [46] X. Chen et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E, 70, 016608(2004).

    [47] J. Huang et al. Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces. Opt. Express, 28, 17832-17840(2020).

    [48] S. K. Ghosh et al. Tunable graphene-based metasurface for polarization-independent broadband absorption in lower Mid-Infrared (MIR) range. IEEE Trans. Electromagn. Compat., 62, 346-354(2020).

    [49] C. Liu, L. Qi, X. Zhang. Broadband graphene-based metamaterial absorbers. AIP Adv., 8, 015301(2018).