• Optics and Precision Engineering
  • Vol. 32, Issue 7, 956 (2024)
Zhaoyu LI, Zihao LIU, Yaoying WANG, Lirong QIU, and Shuai YANG*
Author Affiliations
  • MIIT Key Laboratory of Complex-field Intelligent Exploration, Beijing Institute of Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing100081, China
  • show less
    DOI: 10.37188/OPE.20243207.0956 Cite this Article
    Zhaoyu LI, Zihao LIU, Yaoying WANG, Lirong QIU, Shuai YANG. High-precision laser confocal measurement of semiconductor wafer thickness[J]. Optics and Precision Engineering, 2024, 32(7): 956 Copy Citation Text show less
    References

    [1] X Y YAN, J CHENG, D BIAN et al. Surface profile measurement of doped silicon using near-infrared low-coherence light. Applied Optics, 58, 7436-7442(2019).

    [2] Y S PARK. A novel method for simultaneous measurement of thickness, refractive index, bow, and warp of a large silicon wafer using a spectral-domain interferometer. Metrologia: International Journal of Scientific Metrology, 57(2020).

    [3] Y KIM, N SUGITA, M MITSUISHI. Measurement of surface profile and thickness of multilayer wafer using wavelength-tuning fringe analysis. Precision Engineering, 52, 130-137(2018).

    [4] Y H ZENG, Y X FU, D M TANG et al. Standard measuring device for thickness of silicon wafer based on laser compensation system(2018).

    [5] H AKIKO, B YOUICHI, B JAESEOK et al. Precise measurement of the thickness of silicon wafers by double-sided interferometer and bilateral comparison. Metrologia, 58(2021).

    [6] 张志荣, 洪汉玉, 章秀华. 基于光谱共焦的电路板微型元器件三维高精度检测[J]. 计算机与数字工程, 2022, 50(9): 2102-2108.ZHANGZH R, HONGH Y, ZHANGX H. High-precision 3D inspection of circuit board micro components based on spectral confocal sensor[J]. Computer & Digital Engineering, 2022, 50(9): 2102-2108.(in Chinese)

    [7] A PHOULADY, H CHOI et al. A novel material detection method using femtosecond laser, confocal imaging and image processing enabling endpointing in fast inspection of microelectronics. Microelectronics Reliability, 126, 114287(2021).

    [8] J A CASTILLO-BADILLO, A CABRERA-WROOMAN, J A GARCÍA-SÁINZ. Visualizing G protein-coupled receptors in action through confocal microscopy techniques. Arch Med Res, 45, 283-293(2014).

    [9] Y C LEE. Low-frequency membrane tension measurement of framed membranes in semiconductor manufacturing. Sensors and Actuators, 355, 114312(2023).

    [10] 邱丽荣, 崔晗, 王允, 等. 激光差动共焦拉曼光谱高分辨图谱成像技术进展[J]. 光学学报, 2023, 43(15): 3788/AOS230753. doi: 10.3788/AOS230753QIUL R, CUIH, WANGY, et al. Research progress on high resolution laser differential confocal Raman spectroscopy[J]. Acta Optica Sinica, 2023, 43(15): 3788/AOS230753.(in Chinese). doi: 10.3788/AOS230753

    [11] 邵谭彬, 杨克成, 夏珉, 等. 光谱共焦显微成像技术与应用[J]. 激光与光电子学进展, 2023, 60(12): 3788/LOP222655. doi: 10.3788/LOP222655SHAOT B, YANGK CH, XIAM, et al. Techniques and applications of chromatic confocal microscopy[J]. Laser & Optoelectronics Progress, 2023, 60(12): 3788/LOP222655.(in Chinese). doi: 10.3788/LOP222655

    [12] 顾敏. 共焦显微术的三维成像原理[M]. 北京: 新时代出版社, 2000.GUM. Principles of Three-dimensional Imaging in Confocal Microscopes[M]. Beijing: New Times Press, 2000.(in Chinese)

    [13] 李春艳, 李庚鹏, 刘继红, 等. 光谱共焦法偏心下径向梯度折射率透镜的厚度测量[J]. 光学 精密工程, 2022, 30(17): 2067-2076. doi: 10.37188/OPE.20223017.2067LIC Y, LIG P, LIUJ H, et al. Thickness measurement of radial gradient index lens under eccentricity by spectral confocal method[J]. Opt. Precision Eng., 2022, 30(17): 2067-2076.(in Chinese). doi: 10.37188/OPE.20223017.2067

    Zhaoyu LI, Zihao LIU, Yaoying WANG, Lirong QIU, Shuai YANG. High-precision laser confocal measurement of semiconductor wafer thickness[J]. Optics and Precision Engineering, 2024, 32(7): 956
    Download Citation