• Photonics Research
  • Vol. 13, Issue 4, 924 (2025)
Ziyao Zhang1, Minjia Chen1, Rui Ma1, Bohao Sun1..., Adrian Wonfor1, Richard Penty1 and Qixiang Cheng1,2,*|Show fewer author(s)
Author Affiliations
  • 1Department of Engineering, Centre for Photonic Systems, Electrical Engineering Division, University of Cambridge, Cambridge CB3 0FA, UK
  • 2GlitterinTech Limited, Xuzhou 221000, China
  • show less
    DOI: 10.1364/PRJ.543402 Cite this Article Set citation alerts
    Ziyao Zhang, Minjia Chen, Rui Ma, Bohao Sun, Adrian Wonfor, Richard Penty, Qixiang Cheng, "Dilated space-and-wavelength selective crosspoint optical switch," Photonics Res. 13, 924 (2025) Copy Citation Text show less
    References

    [1] A. Singh, J. Ong, A. Agarwal. Jupiter rising: a decade of CLOS topologies and centralized control in Google’s datacenter network. ACM SIGCOMM Comput. Commun. Rev., 45, 183-197(2015).

    [2] Q. Cheng, M. Bahadori, M. Glick. Recent advances in optical technologies for data centers: a review. Optica, 5, 1354-1370(2018).

    [3] X. Chen, J. Lin, K. Wang. A review of silicon-based integrated optical switches. Laser Photon. Rev., 17, 2200571(2023).

    [4] M. Stepanovsky. A comparative review of MEMS-based optical cross-connects for all-optical networks from the past to the present day. Commun. Surveys Tuts., 21, 2928-2946(2019).

    [5] W. M. Mellette, G. M. Schuster, G. Porter. A scalable, partially configurable optical switch for data center networks. J. Lightwave Technol., 35, 136-144(2016).

    [6] W. M. Mellette, J. E. Ford. Scaling limits of MEMS beam-steering switches for data center networks. J. Lightwave Technol., 33, 3308-3318(2015).

    [7] A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photon., 5, 1742-1748(2018).

    [8] M. S. Li, A. Y. Fuh, S. Wu. Optical switch of diffractive light from a BCT photonic crystal based on HPDLC doped with AZO component. Opt. Lett., 36, 3864-3866(2011).

    [9] R. Soref. Tutorial: integrated-photonic switching structures. APL Photon., 3, 021101(2018).

    [10] Q. Cheng, C. Yao, N. Calabretta. Photonic switch fabrics in data center/high-performance computing networks. Integrated Photonics for Data Communication Applications, 265-301(2023).

    [11] Q. Cheng, L. Y. Dai, N. C. Abrams. Ultralow-crosstalk, strictly non-blocking microring-based optical switch. Photon. Res., 7, 155-161(2019).

    [12] W. Gao, X. Li, L. Lu. Broadband 32 × 32 strictly-nonblocking optical switch on a multi-layer Si3N4-on-SOI platform. Laser Photon. Rev., 17, 2300275(2023).

    [13] C. Vagionas, A. Tsakyridis, T. Chrysostomidis. Lossless 1 × 4 silicon photonic ROADM based on a monolithic integrated erbium doped waveguide amplifier on a Si3N4 platform. J. Lightwave Technol., 40, 1718-1725(2022).

    [14] C. Zhang, Y. Xiang, S. Liu. Silicon photonic wavelength-selective switch based on an array of adiabatic elliptical-microrings. J. Lightwave Technol., 41, 5660-5667(2023).

    [15] Y. Ma, L. Stewart, J. Armstrong. Recent progress of wavelength selective switch. J. Lightwave Technol., 39, 896-903(2021).

    [16] S. Araki, Y. Suemura, N. Henmi. Highly scalable optoelectronic packet-switching fabric based on wavelength-division and space-division optical switch architecture for use in the photonic core node [Invited]. J. Opt. Netw., 2, 213-228(2003).

    [17] R. P. Luijten, R. Grzybowski. The OSMOSIS optical packet switch for supercomputers. Optical Fiber Communication Conference (OFC), OTuF3(2009).

    [18] R. Stabile, A. Rohit, K. A. Williams. Monolithically integrated 8 × 8 space and wavelength selective cross-connect. J. Lightwave Technol., 32, 201-207(2014).

    [19] Q. Cheng, M. Bahadori, M. Glick. Scalable space-and-wavelength selective switch architecture using microring resonators. Conference on Lasers and Electro-Optics (CLEO), STh1N.4(2019).

    [20] A. S. P. Khope, M. Saeidi, R. Yu. Multi-wavelength selective crossbar switch. Opt. Express, 27, 5203-5216(2019).

    [21] L. Luo, R. Ma, R. V. Penty. Unlocking electro-optic resonant phase shifting for multi-dimensional, ultra-dynamic photonic switches. arXiv(2024).

    [22] A. W. Poon, X. Luo, F. Xu. Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection. Proc. IEEE, 97, 1216-1238(2009).

    [23] Q. Cheng, Y. Huang, H. Yang. Silicon photonic switch topologies and routing strategies for disaggregated data centers. IEEE J. Quantum Electron., 26(2020).

    [24] P. DasMahapatra, R. Stabile, A. Rohit. Optical crosspoint matrix using broadband resonant switches. IEEE J. Quantum Electron., 20(2014).

    [25] D. S. Stones. The many formulae for the number of Latin rectangles. Electron. J. Comb., 17, A1(2010).

    [26] K. Ikeda, R. Konoike, K. Suzuki. Large-scale and multiband silicon photonics wavelength cross-connect switch with FSR-free grating-assisted contra-directional couplers. J. Lightwave Technol., 42, 4310-4316(2024).

    [27] A. S. P. Khope, S. Liu, Z. Zhang. 2λ switch. Opt. Lett., 45, 5340-5343(2020).

    [28] W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh. Silicon microring resonators. Laser Photon. Rev., 6, 47-73(2012).

    [29] M. Bahadori, M. Nikdast, S. Rumley. Design space exploration of microring resonators in silicon photonic interconnects: impact of the ring curvature. J. Lightwave Technol., 36, 2767-2782(2018).

    [30] Z. Li, L. Zhou, L. Lu. 4 × 4 nonblocking optical switch fabric based on cascaded multimode interferometers. Photon. Res., 4, 21-26(2016).

    [31] J. Song, Q. Fang, S. H. Tao. Fast and low power Michelson interferometer thermo-optical switch on SOI. Opt. Express, 16, 15304-15311(2008).

    [32] N. Ning, Q. Zhang, Q. Huang. Thermal flux manipulation on the silicon photonic chip to suppress the thermal crosstalk. APL Photon., 9, 046108(2024).

    [33] Y. Huang, Q. Cheng, A. Rizzo. Push-pull microring-assisted space-and-wavelength selective switch. Opt. Lett., 45, 2696-2699(2020).

    [34] Z. Wan, Q. Cen, Y. Ding. Virtual-state model for analyzing electro-optical modulation in ring resonators. Phys. Rev. Lett., 132, 123802(2024).

    [35] H. Cai, S. Fu, Y. Yu. Lateral-zigzag pn junction enabled high-efficiency silicon micro-ring modulator working at 100 Gb/s. IEEE Photon. Technol. Lett., 34, 525-528(2022).

    [36] P. Chen, S. Chen, X. Guan. High-order microring resonators with bent couplers for a box-like filter response. Opt. Lett., 39, 6304-6307(2014).

    [37] Y. Huang, Q. Cheng, Y. Hunget. Multi-stage 8 × 8 silicon photonic switch based on dual-microring switching elements. J. Lightwave Technol., 38, 194-201(2020).

    [38] R. Boeck, N. A. Jaeger, N. Rouger. Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement. Opt. Express, 18, 25151-25157(2010).

    [39] G. Liang, H. Huang, A. Mohanty. Robust, efficient, micrometre-scale phase modulators at visible wavelengths. Nat. Photonics, 15, 908-913(2021).

    [40] D. Liu, L. Zhang, Y. Tan. High-order adiabatic elliptical-microring filter with an ultra-large free-spectral-range. J. Lightwave Technol., 39, 5910-5916(2021).

    [41] N. Eid, R. Boeck, H. Jayatilleka. FSR-free silicon-on-insulator microring resonator based filter with bent contra-directional couplers. Opt. Express, 24, 29009-29021(2016).

    [42] A. Mistry, M. Hammood, H. Shoman. Bandwidth-tunable, FSR-free, microring-based, SOI filter with integrated contra-directional couplers. Opt. Lett., 43, 6041-6044(2018).

    Ziyao Zhang, Minjia Chen, Rui Ma, Bohao Sun, Adrian Wonfor, Richard Penty, Qixiang Cheng, "Dilated space-and-wavelength selective crosspoint optical switch," Photonics Res. 13, 924 (2025)
    Download Citation