[1] Fujio Y, Xu C N, Sakata Y et al. Visualization of relative strain distribution for carbon fiber reinforced plastic plate by mechanoluminescent technique[J]. ECS Transactions, 75, 23-28(2017).
[2] Jha P, Chandra B P. Survey of the literature on mechanoluminescence from 1605 to 2013[J]. Luminescence: the Journal of Biological and Chemical Luminescence, 29, 977-993(2014).
[3] Akiyama M, Xu C N, Liu Y et al. Influence of Eu, Dy co-doped strontium aluminate composition on mechanoluminescence intensity[J]. Journal of Luminescence, 97, 13-18(2002).
[4] Zhang H, Wei Y, Huang X et al. Recent development of elastico-mechanoluminescent phosphors[J]. Journal of Luminescence, 207, 137-148(2019).
[5] Sun N, Ke Q F, Fang Y Z et al. A wearable dual-mode strain sensing yarn: based on the conductive carbon composites and mechanoluminescent layer with core-sheath structures[J]. Materials Research Bulletin, 164, 112259(2023).
[6] Fujio Y, Xu C N, Terasaki N. Flexible mechanoluminescent SrAl2O4∶Eu film with tracking performance of CFRP fracture phenomena[J]. Sensors, 22, 5476(2022).
[7] Pan X, Zhuang Y X, Mei L F et al. Mechanism of electroluminescent materials: review, progress and challenges[J]. Journal of the Chinese Ceramic Society, 50, 3147-3164(2022).
[8] Terasaki N, Xu C N. Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor[J]. IEEE Sensors Journal, 13, 3999-4004(2013).
[9] Zhang J, Bao L K, Lou H Q et al. Flexible and stretchable mechanoluminescent fiber and fabric[J]. Journal of Materials Chemistry C, 5, 8027-8032(2017).
[10] Jeong S M, Song S, Seo H J et al. Battery-free, human-motion-powered light-emitting fabric: mechanoluminescent textile[J]. Advanced Sustainable Systems, 1, 1700126(2017).
[11] Zink J I, Beese W, Schindler J W et al. Triboluminescence of silica core optical fibers[J]. Applied Physics Letters, 40, 110-112(1982).
[12] Liang H H, He Y C, Chen M H et al. Self-powered stretchable mechanoluminescent optical fiber strain sensor[J]. Advanced Intelligent Systems, 3, 2100035(2021).
[13] Chang S L, Deng Y A, Li N et al. Continuous synthesis of ultra-fine fiber for wearable mechanoluminescent textile[J]. Nano Research, 1-8(2023).
[14] Wang H P. Influence of interfacial effect between distributed optical fiber sensors and monitored structures[J]. Acta Optica Sinica, 42, 0206004(2022).
[15] Zhang H, Guo H T, Xu Y T et al. Research progress in chalcogenide glass fibers for infrared laser delivery[J]. Chinese Journal of Lasers, 49, 0101007(2022).
[16] Chandra B P. Mechanoluminescence[C]. Vij D R. Luminescence of solids, 361-389(1998).
[17] Zhang J C, Wang X S, Marriott G et al. Trap-controlled mechanoluminescent materials[J]. Progress in Materials Science, 103, 678-742(2019).
[18] Terasaki N, Zhang H W, Imai Y et al. Hybrid material consisting of mechanoluminescent material and TiO2 photocatalyst[J]. Thin Solid Films, 518, 473-476(2009).
[19] Wang X D, Ling R, Zhang Y F et al. Oxygen-assisted preparation of mechanoluminescent ZnS: Mn for dynamic pressure mapping[J]. Nano Research, 11, 1967-1976(2018).
[20] Su M, Li P H, Zheng S H et al. Largely enhanced elastico-mechanoluminescence of CaZnOS: Mn2+ by co-doping with Nd3+ ions[J]. Journal of Luminescence, 217, 116777(2020).
[21] Chen H M, Wu L, Sun T Q et al. Intense green elastico-mechanoluminescence from KZn(PO3)3∶Tb3+[J]. Applied Physics Letters, 116, 051904(2020).
[22] Li W Y, Xie R J, Zhou T L et al. Synthesis of the phase pure Ba3Si6O12N2∶u2+ green phosphor and its application in high color rendition white LEDs[J]. Dalton Transactions, 43, 6132-6138(2014).
[23] Ning J J, Zheng Y T, Ren Y T et al. MgF2∶Mn2+: novel material with mechanically-induced luminescence[J]. Science Bulletin, 67, 707-715(2022).
[24] Chandra V K, Chandra B P, Jha P. Self-recovery of mechanoluminescence in ZnS∶Cu and ZnS∶Mn phosphors by trapping of drifting charge carriers[J]. Applied Physics Letters, 103, 161113(2013).
[25] Sohn K S, Timilsina S, Singh S P et al. Mechanically driven luminescence in a ZnS∶Cu-PDMS composite[J]. APL Materials, 4, 106102(2016).
[26] Wei Y B, Wu Z, Jia Y M et al. Piezoelectrically-induced stress-luminescence phenomenon in CaAl2O4: Eu2+[J]. Journal of Alloys and Compounds, 646, 86-89(2015).
[27] Jia Y, Yei M, Jia W Y. Stress-induced mechanoluminescence in SrAl2O4∶Eu2+, Dy3+[J]. Optical Materials, 28, 974-979(2006).
[28] Chen C J, Zhuang Y X, Li X Y et al. Achieving remote stress and temperature dual-modal imaging by double-lanthanide-activated mechanoluminescent materials[J]. Advanced Functional Materials, 31, 2101567(2021).
[29] Peng D F, Chen B, Wang F. Recent advances in doped mechanoluminescent phosphors[J]. ChemPlusChem, 80, 1209-1215(2015).
[30] Chandra B P, Chandra V K, Jha P. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II-VI semiconductor phosphors[J]. Physica B: Condensed Matter, 463, 62-67(2015).
[31] Chandra B P, Baghel R N, Luka A K et al. Strong mechanoluminescence induced by elastic deformation of rare-earth-doped strontium aluminate phosphors[J]. Journal of Luminescence, 129, 760-766(2009).
[32] Chen C J, Zhuang Y X, Tu D et al. Creating visible-to-near-infrared mechanoluminescence in mixed-anion compounds SrZn2S2O and SrZnSO[J]. Nano Energy, 68, 104329(2020).
[33] Ma R H, Wei X Y, Wang C F et al. Reproducible mechanical-to-optical energy conversion in Mn (II) doped sphalerite ZnS[J]. Journal of Luminescence, 232, 117838(2021).
[34] Peng D F, Jiang Y, Huang B L et al. A ZnS/CaZnOS heterojunction for efficient mechanical-to-optical energy conversion by conduction band offset[J]. Advanced Materials, 32, 1907747(2020).
[35] Wang W, Peng D F, Zhang H L et al. Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging[J]. Optics Communications, 395, 24-28(2017).
[36] Huang B L, Peng D F, Pan C F. “Energy Relay Center” for doped mechanoluminescence materials: a case study on Cu-doped and Mn-doped CaZnOS[J]. Physical Chemistry Chemical Physics, 19, 1190-1208(2017).
[37] Zhang J C, Gao N, Li L et al. Discovering and dissecting mechanically excited luminescence of Mn2+ activators via matrix microstructure evolution[J]. Advanced Functional Materials, 31, 2100221(2021).
[38] Zhang J C, Zhao L Z, Long Y Z et al. Color manipulation of intense multiluminescence from CaZnOS∶Mn2+ by Mn2+ concentration effect[J]. Chemistry of Materials, 27, 7481-7489(2015).
[39] Zhang J C, Xu C N, Kamimura S et al. An intense elastico-mechanoluminescence material CaZnOS∶Mn2+ for sensing and imaging multiple mechanical stresses[J]. Optics Express, 21, 12976-12986(2013).
[40] Tang H T, Zhao L, Liu Z C et al. A lanthanide-doped glass-ceramic fiber for stress sensing[J]. Cell Reports Physical Science, 3, 101093(2022).
[41] Cao J K, Ding Y C, Sajzew R et al. Mechanoluminescence from highly transparent ZGO: Cr spinel glass ceramics[J]. Optical Materials Express, 12, 3238(2022).
[42] Chandra B P, Chandra V K, Jha P. Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materials[J]. Physica B: Condensed Matter, 461, 38-48(2015).
[43] Wang X D, Peng D F, Huang B L et al. Piezophotonic effect based on mechanoluminescent materials for advanced flexible optoelectronic applications[J]. Nano Energy, 55, 389-400(2019).
[44] Matsui H, Xu C N, Liu Y et al. Origin of mechanoluminescence from Mn-activated ZnAl2O4: triboelectricity-induced electroluminescence[J]. Physical Review B, 69, 235109(2004).
[45] Dubernet M, Gueguen Y, Houizot P et al. Evidence and modeling of mechanoluminescence in a transparent glass particulate composite[J]. Applied Physics Letters, 107, 151906(2015).
[46] Hou B, Yi L Y, Li C et al. An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation[J]. Nature Electronics, 5, 682-693(2022).
[47] Yang W F, Gong W, Gu W et al. Self-powered interactive fiber electronics with visual-digital synergies[J]. Advanced Materials, 33, 2104681(2021).
[48] Zhao J Y, Song S, Mu X et al. Programming mechanoluminescent behaviors of 3D printed cellular structures[J]. Nano Energy, 103, 107825(2022).