• PhotoniX
  • Vol. 5, Issue 1, 39 (2024)
Chenglong You1,*, Mingyuan Hong1, Fatemeh Mostafavi1, Jannatul Ferdous1..., Roberto de J. León-Montiel2, Riley B. Dawkins1 and Omar S. Magaña-Loaiza1|Show fewer author(s)
Author Affiliations
  • 1Quantum Photonics Laboratory, Department of Physics & Astronomy, Baton Rouge, 70803 LA, USA
  • 2Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 Ciudad de México, México
  • show less
    DOI: 10.1186/s43074-024-00153-4 Cite this Article
    Chenglong You, Mingyuan Hong, Fatemeh Mostafavi, Jannatul Ferdous, Roberto de J. León-Montiel, Riley B. Dawkins, Omar S. Magaña-Loaiza. Isolating the classical and quantum coherence of a multiphoton system[J]. PhotoniX, 2024, 5(1): 39 Copy Citation Text show less
    References

    [1] Zurek WH. Decoherence and the Transition from Quantum to Classical. Phys Today. 1991;44(10):36–44. .

    [2] De Martini F, Sciarrino F. Colloquium: Multiparticle quantum superpositions and the quantum-to-classical transition. Rev Mod Phys. 2012;84:1765–89. .

    [3] Arndt M, Hornberger K. Testing the limits of quantum mechanical superpositions. Nat Phys. 2014;10(4):271–7. .

    [4] Vedral V. Quantifying entanglement in macroscopic systems. Nature. 2008;453(7198):1004–7. .

    [5] Gerlich S, Eibenberger S, Tomandl M, Nimmrichter S, Hornberger K, Fagan PJ, et al. Quantum interference of large organic molecules. Nat Commun. 2011;2(1):263. .

    [6] Fein YY, Geyer P, Zwick P, Kiałka F, Pedalino S, Mayor M, et al. Quantum superposition of molecules beyond 25 kDa. Nat Phys. 2019;15(12):1242–5. .

    [7] Dittel C, Dufour G, Weihs G, Buchleitner A. Wave-Particle Duality of Many-Body Quantum States. Phys Rev X. 2021;11:031041. .

    [8] Lvovsky AI, Ghobadi R, Chandra A, Prasad AS, Simon C. Observation of micro-macro entanglement of light. Nat Phys. 2013;9(9):541–4. .

    [9] Bouganne R, Bosch Aguilera M, Ghermaoui A, Beugnon J, Gerbier F. Anomalous decay of coherence in a dissipative many-body system. Nat Phys. 2020;16(1):21–5. .

    [10] Aspuru-Guzik A, Walther P. Photonic quantum simulators. Nat Phys. 2012;8(4):285–91. .

    [11] You C, Miller A, León-Montiel RDJ, Magaña-Loaiza OS. Multiphoton quantum van Cittert-Zernike theorem. npj Quantum Inf. 2023;9(1):50. .

    [12] Dell’Anno F, Siena SD, Illuminati F. Multiphoton quantum optics and quantum state engineering. Phys Rep. 2006;428:53–108. .

    [13] Fröwis F, Sekatski P, Dür W, Gisin N, Sangouard N. Macroscopic quantum states: Measures, fragility, and implementations. Rev Mod Phys. 2018;90:025004. .

    [14] Magaña-Loaiza OS, León-Montiel RDJ, Perez-Leija A, U’Ren AB, You C, Busch K, et al. Multiphoton quantum-state engineering using conditional measurements. npj Quantum Inf. 2019;5(1):80. .

    [15] Harder G, Bartley TJ, Lita AE, Nam SW, Gerrits T, Silberhorn C. Single-Mode Parametric-Down-Conversion States with 50 Photons as a Source for Mesoscopic Quantum Optics. Phys Rev Lett. 2016;116:143601. .

    [16] Smith TA, Shih Y. Turbulence-Free Double-slit Interferometer. Phys Rev Lett. 2018;120:063606. .

    [17] Hong M, Miller A, León-Montiel RDJ, You C, Magaña-Loaiza OS. Engineering Super-Poissonian Photon Statistics of Spatial Light Modes. Laser Photon Rev. 2023;17(10):2300117. .

    [18] Gatti A, Brambilla E, Lugiato LA. Entangled Imaging and Wave-Particle Duality: From the Microscopic to the Macroscopic Realm. Phys Rev Lett. 2003;90:133603. .

    [19] You C, Quiroz-Juárez MA, Lambert A, Bhusal N, Dong C, Perez-Leija A, et al. Identification of light sources using machine learning. Appl Phys Rev. 2020;7(2):021404. .

    [20] You C, Hong M, Bierhorst P, Lita AE, Glancy S, Kolthammer S, et al. Scalable multiphoton quantum metrology with neither pre- nor post-selected measurements. Appl Phys Rev. 2021;8(4):041406. .

    [21] Berry MV. Disruption of wavefronts: statistics of dislocations in incoherent Gaussian random waves. J Phys A Math Gen. 1978;11(1):27. .

    [22] Dennis MR, O’Holleran K, Padgett MJ. Chapter 5 Singular Optics: Optical Vortices and Polarization Singularities. vol. 53 of Progress in Optics. Elsevier; 2009. pp. 293–363. .

    [23] Gbur GJ. Singular optics. Boca Raton: CRC Press; 2016.

    [24] Magaña-Loaiza OS, Mirhosseini M, Cross RM, Rafsanjani SMH, Boyd RW. Hanbury Brown and Twiss interferometry with twisted light. Sci Adv. 2016;2(4):e1501143. .

    [25] Jeltes T, McNamara JM, Hogervorst W, Vassen W, Krachmalnicoff V, Schellekens M, et al. Comparison of the Hanbury Brown-Twiss effect for bosons and fermions. Nature. 2007;445(7126):402–5. .

    [26] Mostafavi F, Hong M, Dawkins RB, Ferdous J, Jin RB, León-Montiel RDJ, et al. Multiphoton Quantum Imaging using Natural Light. arXiv preprint arXiv:240512794. 2024.

    [27] Wubs M. Multiphoton quantum statistics from scattered classical light. Nat Phys. 2024;20(5):689–90. .

    [28] Branderhorst MPA, Londero P, Wasylczyk P, Brif C, Kosut RL, Rabitz H, et al. Coherent Control of Decoherence. Science. 2008;320(5876):638–43. .

    [29] Yu T, Eberly JH. Sudden Death of Entanglement. Science. 2009;323(5914):598–601. .

    [30] Bender N, Sun M, Yilmaz H, Bewersdorf J, Cao H. Circumventing the optical diffraction limit with customized speckles. Optica. 2021;8(2):122–9. .

    [31] Nye JF, Berry MV. Dislocations in wave trains. Proc R Soc Lond A Math Phys Sci. 1974;336(1605):165–90. .

    [32] Wright KC, Leslie LS, Hansen A, Bigelow NP. Sculpting the Vortex State of a Spinor BEC. Phys Rev Lett. 2009;102:030405. .

    [33] Glauber RJ. Coherent and Incoherent States of the Radiation Field. Phys Rev. 1963;131:2766–88. .

    [34] Mandel L, Wolf E. Optical Coherence and Quantum Optics. Cambridge University Press; 1995. .

    [35] Dawkins RB, Hong M, You C, Magaña-Loaiza OS. The quantum Gaussian-Schell model: a link between classical and quantum optics. Opt Lett. 2024;49(15):4242–5. .

    [36] Malý P, Lüttig J, Rose PA, Turkin A, Lambert C, Krich JJ, et al. Separating single- from multi-particle dynamics in nonlinear spectroscopy. Nature. 2023;616(7956):280–7. .

    [37] Jaeger G. What in the (quantum) world is macroscopic? Am J Phys. 2014;82(9):896–905. .

    [38] Hong M, Dawkins RB, Bertoni B, You C, Magaña-Loaiza OS. Nonclassical near-field dynamics of surface plasmons. Nat Phys. 2024;20(5):830–5. .

    [39] Hiekkamäki M, Bouchard F, Fickler R. Photonic Angular Superresolution Using Twisted N00N States. Phys Rev Lett. 2021;127:263601. .

    [40] Jha AK, Leach J, Jack B, Franke-Arnold S, Barnett SM, Boyd RW, et al. Angular Two-Photon Interference and Angular Two-Qubit States. Phys Rev Lett. 2010;104:010501. .

    [41] Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature. 2001;412(6844):313–6. .

    [42] Georgescu IM, Ashhab S, Nori F. Quantum simulation. Rev Mod Phys. 2014;86:153–85. .

    [43] Zhang Z, You C, Magaña-Loaiza OS, Fickler R, León-Montiel RDJ, Torres JP, et al. Entanglement-based quantum information technology: a tutorial. Adv Opt Photon. 2024;16(1):60–162. .

    [44] Magaña-Loaiza OS, Boyd RW. Quantum imaging and information. Rep Prog Phys. 2019;82(12):124401. .

    [45] Rafsanjani SMH, Mirhosseini M, Magaña-Loaiza OS, Gard BT, Birrittella R, Koltenbah BE, et al. Quantum-enhanced interferometry with weak thermal light. Optica. 2017;4(4):487–91. .

    Chenglong You, Mingyuan Hong, Fatemeh Mostafavi, Jannatul Ferdous, Roberto de J. León-Montiel, Riley B. Dawkins, Omar S. Magaña-Loaiza. Isolating the classical and quantum coherence of a multiphoton system[J]. PhotoniX, 2024, 5(1): 39
    Download Citation