• Acta Optica Sinica
  • Vol. 45, Issue 5, 0515001 (2025)
Ying Zhang, Hongzhi Du, Yunbo Hu, Yanbiao Sun*, and Jigui Zhu
Author Affiliations
  • National Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/AOS241716 Cite this Article Set citation alerts
    Ying Zhang, Hongzhi Du, Yunbo Hu, Yanbiao Sun, Jigui Zhu. Multi‑Instance Point Cloud Pose Estimation Method Based on Gaussian‐Weighted Voting Strategy[J]. Acta Optica Sinica, 2025, 45(5): 0515001 Copy Citation Text show less
    Algorithmic framework
    Fig. 1. Algorithmic framework
    Schematic diagram of point-to-point features
    Fig. 2. Schematic diagram of point-to-point features
    Hash indicates intent
    Fig. 3. Hash indicates intent
    Coordinate transformations between model and scene
    Fig. 4. Coordinate transformations between model and scene
    Correspondences generation based on Gaussian-weighted voting
    Fig. 5. Correspondences generation based on Gaussian-weighted voting
    Schematic diagram of distance invariance matrix.
    Fig. 6. Schematic diagram of distance invariance matrix.
    Schematic diagram of refined clustering based on center point
    Fig. 7. Schematic diagram of refined clustering based on center point
    Romain dataset
    Fig. 8. Romain dataset
    Partial pose estimation results of Romain dataset
    Fig. 9. Partial pose estimation results of Romain dataset
    ROBI dataset
    Fig. 10. ROBI dataset
    Partial pose estimation results of ROBI dataset
    Fig. 11. Partial pose estimation results of ROBI dataset
    Experimental scenario. (a) Robotic arm sorting system; (b) before sorting; (c) after sorting
    Fig. 12. Experimental scenario. (a) Robotic arm sorting system; (b) before sorting; (c) after sorting
    Partial recognition results of connecting rod workpieces in real scenarios
    Fig. 13. Partial recognition results of connecting rod workpieces in real scenarios
    WorkpieceRE /(°)TE /mm
    PPFProposed algorithmPPFProposed algorithm
    Brick2.701.652.971.81
    Gear1.270.010.870.23
    Linkage5.983.572.552.36
    Table 1. Accuracy comparison results of the best pose estimation of workpiece
    AlgorithmMRMPMF
    PPF60.4060.4060.40
    3D Hough6.187.216.15
    Proposed algorithm72.9483.2276.96
    Table 2. Pose estimation evaluation results of Romain dataset
    AlgorithmMRMPMF
    Line 2D30.963.224.90
    AAE26.155.118.37
    PPF6.414.584.26
    3D Hough
    Proposed algorithm20.0434.2523.76
    Table 3. Pose estimation evaluation results of ROBI dataset
    SequenceRMSE /mmMR /%MP /%MF /%
    12.8437.5037.5037.50
    21.1341.1853.8546.67
    32.1666.6785.7175.00
    42.5870.0077.7873.69
    51.8090.0090.0090.00
    Table 4. Evaluation results of pose estimation of proposed algorithm under real point cloud dataset
    Algorithm

    Experiment

    No.

    Grasping

    success rate

    Average grasping

    success rate

    PPF18060
    270
    345
    465
    540

    Proposed

    algorithm

    110093
    285
    385
    4100
    595
    Table 5. Success rate of robotic arm grasping in real scenes
    Ying Zhang, Hongzhi Du, Yunbo Hu, Yanbiao Sun, Jigui Zhu. Multi‑Instance Point Cloud Pose Estimation Method Based on Gaussian‐Weighted Voting Strategy[J]. Acta Optica Sinica, 2025, 45(5): 0515001
    Download Citation