• Nano-Micro Letters
  • Vol. 16, Issue 1, 073 (2024)
Moon Sung Kang1,†, Yeuni Yu2,†, Rowoon Park1,†, Hye Jin Heo3..., Seok Hyun Lee1, Suck Won Hong1,4,*, Yun Hak Kim2,5,6,** and Dong-Wook Han1,7,***|Show fewer author(s)
Author Affiliations
  • 1Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
  • 2Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
  • 3Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
  • 4Engineering Research Center for Color‑Modulated Extra‑Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
  • 5Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
  • 6Periodontal Disease Signaling Network Research Center and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
  • 7BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
  • show less
    DOI: 10.1007/s40820-023-01293-1 Cite this Article
    Moon Sung Kang, Yeuni Yu, Rowoon Park, Hye Jin Heo, Seok Hyun Lee, Suck Won Hong, Yun Hak Kim, Dong-Wook Han. Highly Aligned Ternary Nanofiber Matrices Loaded with MXene Expedite Regeneration of Volumetric Muscle Loss[J]. Nano-Micro Letters, 2024, 16(1): 073 Copy Citation Text show less
    References

    [1] B.F. Grogan, J.R. Hsu, Volumetric muscle loss. Am. Acad. Orthop. Surg. 19, S35–S37 (2011).

    [2] S. Tamai, S. Komatsu, H. Sakamoto, S. Sano, N. Sasauchi, Free muscle transplants in dogs, with microsurgical neurovascular anastomoses. Plast. Reconstr. Surg. 46, 219–225 (1970).

    [3] K. Doi, Y. Arakawa, Y. Hattori, A.S. Baliarsing, Restoration of elbow flexion with functioning free muscle transfer in arthrogryposis: a report of two cases. J. Bone Joint Surg. Am. 93, e105 (2011).

    [4] T.C. Burns, D.J. Stinner, D.R. Possley, A.W. Mack, T.T. Eckel et al., Does the zone of injury in combat-related type III open tibia fractures preclude the use of local soft tissue coverage? J. Orthop. Trauma 24, 697–703 (2010).

    [5] J.G. Owens, J.A. Blair, J.C. Patzkowski, R.V. Blanck, J.R. Hsu, Return to running and sports participation after limb salvage. J. Trauma Inj. Infect. Crit. Care 71, S120–S124 (2011).

    [6] J.C. Patzkowski, R.V. Blanck, J.G. Owens, J.M. Wilken, J.A. Blair et al., Can an ankle-foot orthosis change hearts and minds? J. Surg. Orthop. Adv. 20, 8–18 (2011)

    [7] S. Ostrovidov, V. Hosseini, S. Ahadian, T. Fujie, S.P. Parthiban et al., Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. Tissue Eng. Part B Rev. 20, 403–436 (2014).

    [8] R. Yu, H. Zhang, B. Guo, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 14, 1 (2021).

    [9] L. Wang, Y. Wu, B. Guo, P.X. Ma, Nanofiber yarn/hydrogel core-shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation. ACS Nano 9, 9167–9179 (2015).

    [10] R. Dong, P.X. Ma, B. Guo, Conductive biomaterials for muscle tissue engineering. Biomaterials 229, 119584 (2020).

    [11] Y. Liang, L. Qiao, B. Qiao, B. Guo, Conductive hydrogels for tissue repair. Chem. Sci. 14, 3091–3116 (2023).

    [12] C. Mao, F. Wang, B. Cao, Controlling nanostructures of mesoporous silica fibers by supramolecular assembly of genetically modifiable bacteriophages. Angew. Chem. Int. Ed. 51, 6411–6415 (2012).

    [13] Y. Zhou, Q. Zhao, M. Wang, Biomanufacturing of biomimetic three-dimensional nanofibrous multicellular constructs for tissue regeneration. Colloids Surf. B Biointerfaces 223, 113189 (2023).

    [14] L. Liu, F. Xu, H. Jin, B. Qiu, J. Yang et al., Integrated manufacturing of suspended and aligned nanofibrous scaffold for structural maturation and synchronous contraction of HiPSC-derived cardiomyocytes. Bioengineering 10, 702 (2023).

    [15] T. Jiang, D. Kai, S. Liu, X. Huang, S. Heng et al., Mechanically cartilage-mimicking poly(PCL-PTHF urethane)/collagen nanofibers induce chondrogenesis by blocking NF-kappa B signaling pathway. Biomaterials 178, 281–292 (2018).

    [16] B.J. Kwee, D.J. Mooney, Biomaterials for skeletal muscle tissue engineering. Curr. Opin. Biotechnol. 47, 16–22 (2017).

    [17] Y. Zheng, X. Hong, J. Wang, L. Feng, T. Fan et al., 2D nanomaterials for tissue engineering and regenerative nanomedicines: recent advances and future challenges. Adv. Healthc. Mater. 10, e2001743 (2021).

    [18] X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 (2021).

    [19] S. Hao, H. Han, Z. Yang, M. Chen, Y. Jiang et al., Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials. Nano-Micro Lett. 14, 178 (2022).

    [20] A. Parihar, A. Singhal, N. Kumar, R. Khan, M.A. Khan et al., Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics. Nano-Micro Lett. 14, 100 (2022).

    [21] T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023).

    [22] E. Mostafavi, S. Iravani, MXene-graphene composites: a perspective on biomedical potentials. Nano-Micro Lett. 14, 130 (2022).

    [23] J. Yin, S. Pan, X. Guo, Y. Gao, D. Zhu et al., Nb2C MXene-functionalized scaffolds enables osteosarcoma phototherapy and angiogenesis/osteogenesis of bone defects. Nano-Micro Lett. 13, 30 (2021).

    [24] S. Umrao, R. Tabassian, J. Kim, V.H. Nguyen, Q. Zhou et al., MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 4, eaaw7797 (2019).

    [25] P. Xue, Y. Chen, Y. Xu, C. Valenzuela, X. Zhang et al., Bioinspired MXene-based soft actuators exhibiting angle-independent structural color. Nano-Micro Lett. 15, 1 (2022).

    [26] M. Soleymaniha, M.A. Shahbazi, A.R. Rafieerad, A. Maleki, A. Amiri, Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv. Healthc. Mater. 8, e1801137 (2019).

    [27] T. Li, J. Ma, W. Wang, B. Lei, Bioactive MXene promoting angiogenesis and skeletal muscle regeneration through regulating M2 polarization and oxidation stress. Adv. Healthc. Mater. 12, e2201862 (2023).

    [28] S. Boularaoui, A. Shanti, M. Lanotte, S. Luo, S. Bawazir et al., Nanocomposite conductive bioinks based on low-concentration GelMA and MXene nanosheets/gold nanoparticles providing enhanced printability of functional skeletal muscle tissues. ACS Biomater. Sci. Eng. 7, 5810–5822 (2021).

    [29] M. Khazaei, A. Ranjbar, M. Arai, S. Yunoki, Topological insulators in the ordered double transition metals M2′M′′C2MXenes (M′=Mo, W;M′′=Ti, Zr, Hf). Phys. Rev. B 94, 125152 (2016).

    [30] Z.-Q. Huang, M.-L. Xu, G. Macam, C.-H. Hsu, F.-C. Chuang, Large-gap topological insulators in functionalized ordered double transition metal carbide MXenes. Phys. Rev. B 102, 075306 (2020).

    [31] I. Persson, L.-Å. Näslund, J. Halim, M.W. Barsoum, V. Darakchieva et al., On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum. 2D Mater. 5, 015002 (2017).

    [32] N.C. Osti, M. Naguib, A. Ostadhossein, Y. Xie, P.R. Kent et al., Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Appl. Mater. Interfaces 8, 8859–8863 (2016).

    [33] S. Goodwin, J.D. McPherson, W.R. McCombie, Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).

    [34] S.C. Schuster, Next-generation sequencing transforms today’s biology. Nat. Methods 5, 16–18 (2008).

    [35] S.H. Lee, S. Jeon, X. Qu, M.S. Kang, J.H. Lee et al., Ternary MXene-loaded PLCL/collagen nanofibrous scaffolds that promote spontaneous osteogenic differentiation. Nano Converg. 9, 38 (2022).

    [36] Y.B. Lee, S.-J. Song, Y.C. Shin, Y.J. Jung, B. Kim et al., Ternary nanofiber matrices composed of PCL/black phosphorus/collagen to enhance osteodifferentiation. J. Ind. Eng. Chem. 80, 802–810 (2019).

    [37] D. Szklarczyk, A.L. Gable, D. Lyon, A. Junge, S. Wyder et al., STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).

    [38] P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    [39] T. Wu, E. Hu, S. Xu, M. Chen, P. Guo et al., clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    [40] S. Iravani, R.S. Varma, MXene-based composites as nanozymes in biomedicine: a perspective. Nano-Micro Lett. 14, 213 (2022).

    [41] G. Wang, X. Shen, B. Wang, J. Yao, J. Park, Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47, 1359–1364 (2009).

    [42] M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). MXenes (Jenny Stanford Publishing, New York, 2023), pp.415–449.

    [43] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    [44] S.P. Koenig, R.A. Doganov, H. Schmidt, A.H. Castro Neto, B. Özyilmaz, Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014).

    [45] X. Sang, Y. Xie, M.W. Lin, M. Alhabeb, K.L. Van Aken et al., Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10, 9193–9200 (2016).

    [46] S.Y. Chae, R. Park, S.W. Hong, Surface-mediated high antioxidant and anti-inflammatory effects of astaxanthin-loaded ultrathin graphene oxide film that inhibits the overproduction of intracellular reactive oxygen species. Biomater. Res. 26, 30 (2022).

    [47] S.H. Kang, Y.C. Shin, E.Y. Hwang, J.H. Lee, C.-S. Kim et al., Engineered “coffee-rings” of reduced graphene oxide as ultrathin contact guidance to enable patterning of living cells. Mater. Horiz. 6, 1066–1079 (2019).

    [48] M. Seredych, K. Maleski, T.S. Mathis, Y. Gogotsi, Delamination of MXenes using bovine serum albumin. Colloids Surf. A Physicochem. Eng. Aspects 641, 128580 (2022).

    [49] J. Sun, Q. Mu, T. Wang, J. Qi, C. Hu, Selective electrosorption of Ca2+ by MXene cathodes coupled with NiAl-LMO anodes through ion intercalation. J. Colloid Interface Sci. 590, 539–547 (2021).

    [50] J. Cao, J. Li, D. Li, Z. Yuan, Y. Zhang et al., Strongly coupled 2D transition metal chalcogenide-MXene-carbonaceous nanoribbon heterostructures with ultrafast ion transport for boosting sodium/potassium ions storage. Nano-Micro Lett. 13, 113 (2021).

    [51] K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi et al., Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10, 3674–3684 (2016).

    [52] S.H. Ku, C.B. Park, Myoblast differentiation on graphene oxide. Biomaterials 34, 2017–2023 (2013).

    [53] J.N. Artaza, S. Bhasin, C. Mallidis, W. Taylor, K. Ma et al., Endogenous expression and localization of myostatin and its relation to myosin heavy chain distribution in C2C12 skeletal muscle cells. J. Cell. Physiol. 190, 170–179 (2002).

    [54] A.R. Gillies, R.L. Lieber, Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44, 318–331 (2011).

    [55] L. Chen, E. Bonaccurso, Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 90, 022401 (2014).

    [56] J. Pelipenko, P. Kocbek, J. Kristl, Nanofiber diameter as a critical parameter affecting skin cell response. Eur. J. Pharm. Sci. 66, 29–35 (2015).

    [57] J.M. Dang, K.W. Leong, Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers. Adv. Mater. 19, 2775–2779 (2007).

    [58] K.H. Lee, G.H. Kwon, S.J. Shin, J.Y. Baek, D.K. Han et al., Hydrophilic electrospun polyurethane nanofiber matrices for hMSC culture in a microfluidic cell chip. J. Biomed. Mater. Res. A 90, 619–628 (2009).

    [59] I. Sousa, A. Mendes, R.F. Pereira, P.J. Bártolo, Collagen surface modified poly(ε-caprolactone) scaffolds with improved hydrophilicity and cell adhesion properties. Mater. Lett. 134, 263–267 (2014).

    [60] L. Zhang, W. Su, Y. Huang, H. Li, L. Fu et al., In situ high-pressure X-ray diffraction and Raman spectroscopy study of Ti3C2Tx MXene. Nanoscale Res. Lett. 13, 343 (2018).

    [61] D. Qu, Y. Jian, L. Guo, C. Su, N. Tang et al., An organic solvent-assisted intercalation and collection (OAIC) for Ti3C2Tx MXene with controllable sizes and improved yield. Nano-Micro Lett. 13, 188 (2021).

    [62] F. Liu, X. Liao, C. Liu, M. Li, Y. Chen et al., Poly(l-lactide-co-caprolactone)/tussah silk fibroin nanofiber vascular scaffolds with small diameter fabricated by core-spun electrospinning technology. J. Mater. Sci. 55, 7106–7119 (2020).

    [63] K. Garkhal, S. Verma, S. Jonnalagadda, N. Kumar, Fast degradable poly(L-lactide-co-ε-caprolactone) microspheres for tissue engineering: synthesis, characterization, and degradation behavior. J. Polym. Sci. A Polym. Chem. 45, 2755–2764 (2007).

    [64] A. Rafieerad, W. Yan, G.L. Sequiera, N. Sareen, E. Abu-El-Rub et al., Application of Ti3C2 MXene quantum dots for immunomodulation and regenerative medicine. Adv. Healthc. Mater. 8, e1900569 (2019).

    [65] A. Sengupta, B.V. Bhaskara Rao, N. Sharma, S. Parmar, V. Chavan et al., Comparative evaluation of MAX, MXene, NanoMAX, and NanoMAX-derived-MXene for microwave absorption and Li ion battery anode applications. Nanoscale 12, 8466–8476 (2020).

    [66] M.S. Rizvi, P. Kumar, D.S. Katti, A. Pal, Mathematical model of mechanical behavior of micro/nanofibrous materials designed for extracellular matrix substitutes. Acta Biomater. 8, 4111–4122 (2012).

    [67] S.R. Goodyear, R.M. Aspden, Mechanical properties of bone ex vivo, in Bone Research Protocols. ed. by M.H. Helfrich, S.H. Ralston (Humana Press, Totowa, 2012), pp.555–571.

    [68] M. Akhmanova, E. Osidak, S. Domogatsky, S. Rodin, A. Domogatskaya, Physical, spatial, and molecular aspects of extracellular matrix of in vivo niches and artificial scaffolds relevant to stem cells research. Stem Cells Int. 2015, 167025 (2015).

    [69] L. Geddes, L. Carson, E. Themistou, F. Buchanan, A comparison of the increased temperature accelerated degradation of Poly(,-lactide-co-glycolide) and Poly (-lactide-co-glycolide). Polym. Test. 91, 106853 (2020).

    [70] J. Jokinen, E. Dadu, P. Nykvist, J. Käpylä, D.J. White et al., Integrin-mediated cell adhesion to type I collagen fibrils. J. Biol. Chem. 279, 31956–31963 (2004).

    [71] L.T. Denes, L.A. Riley, J.R. Mijares, J.D. Arboleda, K. McKee et al., Culturing C2C12 myotubes on micromolded gelatin hydrogels accelerates myotube maturation. Skelet. Muscle 9, 17 (2019).

    [72] M.A. Schwartz, R.K. Assoian, Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J. Cell Sci. 114, 2553–2560 (2001).

    [73] B.M. Sicari, V. Agrawal, B.F. Siu, C.J. Medberry, C.L. Dearth et al., A murine model of volumetric muscle loss and a regenerative medicine approach for tissue replacement. Tissue Eng. Part A 18, 1941–1948 (2012).

    [74] N.J. Turner, A.J. Yates Jr., D.J. Weber, I.R. Qureshi, D.B. Stolz et al., Xenogeneic extracellular matrix as an inductive scaffold for regeneration of a functioning musculotendinous junction. Tissue Eng. Part A 16, 3309–3317 (2010).

    [75] B.M. Sicari, J.P. Rubin, C.L. Dearth, M.T. Wolf, F. Ambrosio et al., An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci. Transl. Med. 6, 234ra58 (2014).

    [76] V.J. Mase Jr., J.R. Hsu, S.E. Wolf, J.C. Wenke, D.G. Baer et al., Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics 33, 511 (2010).

    [77] Y. Jin, E.J. Jeon, S. Jeong, S. Min, Y.S. Choi et al., Reconstruction of muscle fascicle-like tissues by anisotropic 3D patterning. Adv. Funct. Mater. 31, 2006227 (2021).

    [78] Y. Jin, D. Shahriari, E.J. Jeon, S. Park, Y.S. Choi et al., Functional skeletal muscle regeneration with thermally drawn porous fibers and reprogrammed muscle progenitors for volumetric muscle injury. Adv. Mater. 33, e2007946 (2021).

    [79] N.E. Gentile, K.M. Stearns, E.H. Brown, J.P. Rubin, M.L. Boninger et al., Targeted rehabilitation after extracellular matrix scaffold transplantation for the treatment of volumetric muscle loss. Am. J. Phys. Med. Rehabil. 93, S79–S87 (2014).

    [80] B.N. Brown, J.E. Valentin, A.M. Stewart-Akers, G.P. McCabe, S.F. Badylak, Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30, 1482–1491 (2009).

    [81] P. Heher, B. Maleiner, J. Prüller, A.H. Teuschl, J. Kollmitzer et al., A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomater. 24, 251–265 (2015).

    [82] R. Raman, L. Grant, Y. Seo, C. Cvetkovic, M. Gapinske et al., Damage, healing, and remodeling in optogenetic skeletal muscle bioactuators. Adv. Healthc. Mater. 6, 201700030 (2017).

    [83] E. Ko, O. Aydin, Z. Li, L. Gapinske, K.-Y. Huang et al., Empowering engineered muscle in biohybrid pump by extending connexin 43 duration with reduced graphene oxides. Biomaterials 287, 121643 (2022).

    [84] H. Nakazawa, K. Chang, S. Shinozaki, T. Yasukawa, K. Ishimaru et al., iNOS as a driver of inflammation and apoptosis in mouse skeletal muscle after burn injury: possible involvement of Sirt1 S-nitrosylation-mediated acetylation of p65 NF-κB and p53. PLoS ONE 12, e0170391 (2017).

    [85] S. Schiaffino, C. Mammucari, Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet. Muscle 1, 4 (2011).

    [86] E. Andres-Mateos, H. Brinkmeier, T.N. Burks, R. Mejias, D.C. Files et al., Activation of serum/glucocorticoid-induced kinase 1 (SGK1) is important to maintain skeletal muscle homeostasis and prevent atrophy. EMBO Mol. Med. 5, 80–91 (2013).

    [87] J. Massenet, E. Gardner, B. Chazaud, F.J. Dilworth, Epigenetic regulation of satellite cell fate during skeletal muscle regeneration. Skelet. Muscle 11, 4 (2021).

    [88] M.K. Tu, J.B. Levin, A.M. Hamilton, L.N. Borodinsky, Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium 59, 91–97 (2016).

    [89] D.R. Brickley, A.S. Agyeman, R.F. Kopp, B.A. Hall, M.C. Harbeck et al., Serum- and glucocorticoid-induced protein kinase 1 (SGK1) is regulated by store-operated Ca2+ entry and mediates cytoprotection against necrotic cell death. J. Biol. Chem. 288, 32708–32719 (2013).

    [90] J.M. García-Martínez, D.R. Alessi, mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem. J. 416, 375–385 (2008).

    [91] E.A. Ivakine, R.D. Cohn, Maintaining skeletal muscle mass: lessons learned from hibernation. Exp. Physiol. 99, 632–637 (2014).

    [92] J. Luo, A. Liang, M. Liang, R. Xia, Y. Rizvi et al., Serum glucocorticoid-regulated kinase 1 blocks CKD-induced muscle wasting via inactivation of FoxO3a and Smad2/3. J Am Soc Nephrol 27, 2797–2808 (2016).

    [93] Q. Xue, Y. Yan, R. Zhang, H. Xiong, Regulation of iNOS on immune cells and its role in diseases. Int. J. Mol. Sci. 19, 3805 (2018).

    [94] Y. Yu, H. Sun, Q. Lu, J. Sun, P. Zhang et al., Spontaneous formation of MXene-oxidized sono/chemo-dynamic sonosensitizer/nanocatalyst for antibacteria and bone-tissue regeneration. J. Nanobiotechnol. 21, 193 (2023).

    [95] N.C. Sibisi, C. Snyman, K.H. Myburgh, C.U. Niesler, Evaluating the role of nitric oxide in myogenesis in vitro. Biochimie 196, 216–224 (2022).

    [96] E. Rigamonti, T. Touvier, E. Clementi, A.A. Manfredi, S. Brunelli et al., Requirement of inducible nitric oxide synthase for skeletal muscle regeneration after acute damage. J. Immunol. 190, 1767–1777 (2013).

    [97] M. Yamada, Y. Sankoda, R. Tatsumi, W. Mizunoya, Y. Ikeuchi et al., Matrix metalloproteinase-2 mediates stretch-induced activation of skeletal muscle satellite cells in a nitric oxide-dependent manner. Int. J. Biochem. Cell Biol. 40, 2183–2191 (2008).

    [98] X. Chen, Y. Li, Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis. Cell Adh. Migr. 3, 337–341 (2009).

    [99] S. Hayashi, H. Aso, K. Watanabe, H. Nara, M.T. Rose et al., Sequence of IGF-I, IGF-II, and HGF expression in regenerating skeletal muscle. Histochem. Cell Biol. 122, 427–434 (2004).

    [100] P. Kaliman, F. Viñals, X. Testar, M. Palacín, A. Zorzano, Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells. J. Biol. Chem. 271, 19146–19151 (1996).

    [101] R. Kornasio, I. Riederer, G. Butler-Browne, V. Mouly, Z. Uni et al., Beta-hydroxy-beta-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways. Biochim. Biophys. Acta 1793, 755–763 (2009).

    [102] M. Ma, X. Wang, X. Chen, R. Cai, F. Chen et al., microRNA-432 targeting E2F3 and P55PIK inhibits myogenesis through PI3K/AKT/mTOR signaling pathway. RNA Biol. 14, 347–360 (2017).

    [103] J. Kim, M.Y. Park, H.K. Kim, Y. Park, K.Y. Whang, Cortisone and dexamethasone inhibit myogenesis by modulating the AKT/mTOR signaling pathway in C2C12. Biosci. Biotechnol. Biochem. 80, 2093–2099 (2016).

    [104] Kshitiz, J. Park, P. Kim, W. Helen, A.J. Engler et al., Control of stem cell fate and function by engineering physical microenvironments. Integr. Biol. 4, 1008–1018 (2012).

    [105] C. Leclech, A.I. Barakat, Is there a universal mechanism of cell alignment in response to substrate topography? Cytoskeleton 78, 284–292 (2021).

    [106] M.T. Lam, S. Sim, X. Zhu, S. Takayama, The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes. Biomaterials 27, 4340–4347 (2006).

    [107] M.T. Lam, Y.-C. Huang, R.K. Birla, S. Takayama, Microfeature guided skeletal muscle tissue engineering for highly organized 3-dimensional free-standing constructs. Biomaterials 30, 1150–1155 (2009).

    [108] D.G. Farwell, K.A. Shera, J.I. Koop, G.A. Bonnet, C.P. Matthews et al., Genetic and epigenetic changes in human epithelial cells immortalized by telomerase. Am. J. Pathol. 156, 1537–1547 (2000).

    [109] R. Foulkes, E. Man, J. Thind, S. Yeung, A. Joy et al., The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater. Sci. 8, 4653–4664 (2020).

    Moon Sung Kang, Yeuni Yu, Rowoon Park, Hye Jin Heo, Seok Hyun Lee, Suck Won Hong, Yun Hak Kim, Dong-Wook Han. Highly Aligned Ternary Nanofiber Matrices Loaded with MXene Expedite Regeneration of Volumetric Muscle Loss[J]. Nano-Micro Letters, 2024, 16(1): 073
    Download Citation