• Chinese Optics Letters
  • Vol. 23, Issue 2, 023603 (2025)
Wanwan Cao1,2, Junwei Zhang1,2, Junyan Dai1,2, Lijie Wu1,2..., Hanqing Yang1,2, Zhen Zhang3,*, Huidong Li1,2,** and Qiang Cheng1,2,***|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
  • 2Institute of Electromagnetic Space, Southeast University, Nanjing 210096, China
  • 3School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China
  • show less
    DOI: 10.3788/COL202523.023603 Cite this Article Set citation alerts
    Wanwan Cao, Junwei Zhang, Junyan Dai, Lijie Wu, Hanqing Yang, Zhen Zhang, Huidong Li, Qiang Cheng, "An efficient design method of dual-polarized reconfigurable intelligent surface," Chin. Opt. Lett. 23, 023603 (2025) Copy Citation Text show less
    References

    [1] G. V. Viktor. The electrodynamics of substances with simultaneously negative values of ϵ and µ. Phys. Uspekhi, 10, 509(1968).

    [2] A. Arbabi, Y. Horie, M. Bagheri et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937(2015).

    [3] T. J. Cui, M. Q. Qi, X. Wan et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 3, e218(2014).

    [4] C. L. Holloway, E. F. Kuester, J. A. Gordon et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag., 54, 10(2012).

    [5] G.-B. Wu, J. Y. Dai, K. M. Shum et al. A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves. Nat. Commun., 14, 5155(2023).

    [6] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139(2014).

    [7] Y. Liu, L. Dong, M. F. M. Sabri et al. Advancements in tunable and multifunctional metamaterial absorbers: a comprehensive review of microwave to terahertz frequency range. J. Phys. D Appl. Phys., 57, 293002(2024).

    [8] G. Sun, S. Xing, J. Wang et al. Flexible conformal multifunctional time-varying phase-modulated metasurface with polarization control for radar feature transformation. Adv. Opt. Mater., 12, 2301743(2024).

    [9] W. Tang, X. Li, J. Y. Dai et al. Wireless communications with programmable metasurface: Transceiver design and experimental results. China Commun., 16, 46(2019).

    [10] S. R. Wang, J. Y. Dai, J. C. Ke et al. Radar micro-doppler signature generation based on time-domain digital coding metasurface. Adv. Sci., 11, 2306850(2024).

    [11] Y. Saifullah, Q. Chen, G.-M. Yang et al. Dual-band multi-bit programmable reflective metasurface unit cell: design and experiment. Opt. Express, 29, 2658(2021).

    [12] X. Wang, G.-M. Yang. Time-coding spread-spectrum reconfigurable intelligent surface for secure wireless communication: theory and experiment. Opt. Express, 29, 32031(2021).

    [13] J. Liu, Y. Duan, T. Zhang et al. Dual-polarized and real-time reconfigurable metasurface absorber with infrared-coded remote-control system. Nano Res., 15, 7498(2022).

    [14] P. Ramezani, M. A. Girnyk, E. Björnson. Dual-polarized reconfigurable intelligent surface-assisted broad beamforming. IEEE Commun. Lett., 27, 3073(2023).

    [15] X. G. Zhang, Q. Yu, W. X. Jiang et al. Polarization-controlled dual-programmable metasurfaces. Adv. Sci., 7, 1903382(2020).

    [16] C. Huang, A. Zappone, G. C. Alexandropoulos et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wireless Commun., 18, 4157(2019).

    [17] C. Liu, H. Zhang, L. Li et al. Towards intelligent electromagnetic inverse scattering using deep learning techniques and information metasurfaces. IEEE J. Microw., 3, 509(2023).

    [18] W. Tang, M. Z. Chen, J. Y. Dai et al. Wireless communications with programmable metasurface: new paradigms, opportunities, and challenges on transceiver design. IEEE Wireless Commun., 27, 180(2020).

    [19] P. Naseri, S. V. Hum. A generative machine learning-based approach for inverse design of multilayer metasurfaces. IEEE Trans. Antennas Propag., 69, 5725(2021).

    [20] S. Pearson, P. Naseri, S. V. Hum. A beam-splitting bianisotropic metasurface designed by optimization and machine learning. IEEE Open J. Antennas Propag., 3, 798(2022).

    [21] X. Shi, T. Qiu, J. Wang et al. Metasurface inverse design using machine learning approaches. J. Phys. D Appl. Phys., 53, 275105(2020).

    [22] M. Borgese, F. Costa. A simple equivalent circuit approach for anisotropic frequency-selective surfaces and metasurfaces. IEEE Trans. Antennas Propag., 68, 7088(2020).

    [23] B. S. da Silva, A. L. P. de Siqueira Campos, A. G. Neto. Equivalent circuit model for analysis of frequency selective surfaces with ring and double concentric ring apertures. IET Microw. Antennas Propag., 14, 600(2020).

    [24] T. Qin, X. Q. Lin, Y. Yao et al. Efficient synthesis of angular selective surfaces based on accurate equivalent circuit analysis. IEEE Trans. Microw. Theory Tech., 71, 2625(2023).

    [25] Z. Wei, Z. Zhou, P. Wang et al. Equivalent circuit theory-assisted deep learning for accelerated generative design of metasurfaces. IEEE Trans. Antennas Propag., 70, 5120(2022).

    [26] Z. Zhang, J. W. Zhang, J. W. Wu et al. Macromodeling of reconfigurable intelligent surface based on microwave network theory. IEEE Trans. Antennas Propag., 70, 8707(2022).

    [27] J. W. Zhang, Z. Zhang, J. Zhang et al. A novel two-stage optimization framework for designing active metasurfaces based on multiport microwave network theory. IEEE Trans. Antennas Propag., 72, 1603(2024).

    [28] N. Yu, P. Genevet, M. A. Kats et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333(2011).

    Wanwan Cao, Junwei Zhang, Junyan Dai, Lijie Wu, Hanqing Yang, Zhen Zhang, Huidong Li, Qiang Cheng, "An efficient design method of dual-polarized reconfigurable intelligent surface," Chin. Opt. Lett. 23, 023603 (2025)
    Download Citation