[1] T YANAGIDA. Inorganic scintillating materials and scintillation detectors. Proceedings of the Japan Academy Series B Physical and Biological Sciences, 75(2018).
[2] EIJK C W E VAN, A BESSIèRE, P DORENBOS. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 260(2004).
[3] J LI, T F XIE, H M KOU et al. Effect of trace SiO2 addition on optical and scintillation property of Pr:Lu3Al5O12 ceramics. Journal of Inorganic Materials, 796(2019).
[4] A IKESUE. Processing of Ceramics:Breakthroughs in Optical Materials, 141(2021).
[5] Z X QU, C J YU, Y T WEI et al. Thermal conductivity of boron carbide under fast neutron irradiation. Journal of Advanced Ceramics, 482(2022).
[6] A A KHARIEKY, K R EBRAHIM SARAEE. Synthesis and characterization of radio and thermoluminescence properties of Sm doped Gd2O3, Gd2O2S and Gd2O2SO4 nanocrystalline phosphors. Journal of Luminescence, 220: 116979(2020).
[7] B F QIAN, Y L WANG, Q R ZHAO et al. Adjustable multi-color luminescence and energy transfer of capsule-shaped Gd2O2S: Tb3+, Sm3+ phosphors. Journal of Luminescence, 244: 118715(2022).
[8] W WANG, H M KOU, S P LIU et al. Optical and scintillation properties of Gd2O2S: Pr, Ce, F ceramics fabricated by spark plasma sintering. Ceramics International, 2576(2015).
[9] S BLAHUTA, B VIANA, A BESSIèRE et al. Luminescence quenching processes in Gd2O2S:Pr3+,Ce3+ scintillating ceramics. Optical Materials, 1514(2011).
[10] W WANG, H M KOU, S P LIU et al. Comparison of the optical and scintillation properties of Gd2O2S: Pr, Ce ceramics fabricated by hot pressing and pressureless sintering. Optical Materials, 42: 199(2015).
[11] A BAGHERI, EBRAHIM SARAEE K REZAEE, H R SHAKUR et al. Synthesis and characterization of physical properties of Gd2O2S:Pr3+ semi-nanoflower phosphor. Applied Physics A, 553(2016).
[12] E J POPOVICI, L MURESAN, A HRISTEA-SIMOC et al. Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S:Tb phosphor by the flux method. Optical Materials, 559(2004).
[13] Y H ZHAN, F R AI, F CHEN et al. Intrinsically zirconium-89 labeled Gd2O2S:Eu nanoprobes for in vivo positron emission tomography and gamma-ray-induced radioluminescence imaging. Small, 2872(2016).
[14] P TRTIK, J HOVIND, C GRüNZWEIG et al. Improving the spatial resolution of neutron imaging at Paul Scherrer Institut-The Neutron Microscope Project. Physics Procedia, 69: 169(2015).
[15] F WANG, B YANG, J C ZHANG et al. Highly enhanced luminescence of Tb3+-activated gadolinium oxysulfide phosphor by doping with Zn2+ ions. Journal of Luminescence, 473(2010).
[16] L CHEN, Y WU, H Y HUO et al. Nanoscale Gd2O2S:Tb scintillators for high-resolution fluorescent imaging of cold neutrons. ACS Applied Nano Materials, 8440(2022).
[17] I KANDARAKIS, D CAVOURAS. Experimental and theoretical assessment of the performance of Gd2O2S:Tb and La2O2S:Tb phosphors and Gd2O2S:Tb-La2O2S:Tb mixtures for X-ray imaging. European Radiology, 1083(2001).
[18] P TRTIK, E H LEHMANN. Progress in high-resolution neutron imaging at the Paul Scherrer Institut-The Neutron Microscope Project. Journal of Physics: Conference Series(2016).
[19] X YAN, G R FERN, R WITHNALL et al. Effects of the host lattice and doping concentration on the colour of Tb3+ cation emission in Y2O2S:Tb3+ and Gd2O2S:Tb3+ nanometer sized phosphor particles. Nanoscale, 8640(2013).
[20] G E GIAKOUMAKIS, C D NOMICOS, P X SANDILOS. Absolute efficiency of Gd2O2S:Tb screens under fluoroscopic conditions. Physics in Medicine and Biology, 673(1989).
[21] E R WESTPHAL, A D BROWN, E C QUINTANA et al. Visible emission spectra of thermographic phosphors under X-ray excitation. Measurement Science and Technology, 094008(2021).
[22] W WANG, Y S LI, H M KOU et al. Gd2O2S: Pr scintillation ceramics from powder synthesized by a novel carbothermal reduction method. Journal of the American Ceramic Society, 2159(2015).
[23] P TRTIK, E H LEHMANN. Isotopically-enriched gadolinium-157 oxysulfide scintillator screens for the high-resolution neutron imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 788: 67(2015).
[24] R YASUDA, M KATAGIRI, M MATSUBAYASHI. Influence of powder particle size and scintillator layer thickness on the performance of Gd2O2S:Tb scintillators for neutron imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 680: 139(2012).
[25] V KATARIA, D S MEHTA. Multispectral harvesting rare-earth oxysulphide based highly efficient transparent luminescent solar concentrator. Journal of Rare Earths, 41(2022).
[26] X Y HUANG, J Y DING, J LI. Rare earth doped Gd2O2S scintillation ceramics. Journal of Inorganic Materials, 789(2021).
[27] J H DANIEL, A SAWANT, M TEEPE et al. Fabrication of high aspect-ratio polymer microstructures for large-area electronic portal X-ray imagers. Sensors and Actuators A-Physical, 185(2007).
[28] G Q WU, H M QIN, S W FENG et al. Ultrafine Gd2O2S:Pr powders prepared via urea precipitation method using SO2/SO42- as sulfuration agent—a comparative study. Powder Technology, 305: 382(2017).
[29] C HE, Z G XIA, Q L LIU. Microwave solid state synthesis and luminescence properties of green-emitting Gd2O2S:Tb3+ phosphor. Optical Materials, 42: 11(2015).
[30] R G PEARSON. Hard and soft acids and bases. Journal of the American Chemical Society, 3533(1963).
[31] Y J DING, P D HAN, L X WANG et al. Preparation, morphology and luminescence properties of Gd2O2S:Tb with different Gd2O3 raw materials. Rare Metals, 221(2015).
[32] Y H SONG, H P YOU, Y J HUANG et al. Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties. Inorganic Chemistry, 11499(2010).
[33] P D HAN, L ZHANG, L X WANG et al. Investigation on the amounts of Na2CO3 and sulphur to obtain pure Y2O2S and up-conversion luminescence of Y2O2S:Er. Journal of Rare Earths, 849(2011).
[34] Q LIU, H M PAN, X P CHEN et al. Gd2O2S:Tb scintillation ceramics fabricated from high sinterability nanopowders via hydrogen reduction. Optical Materials, 94: 299(2019).
[35] X J WANG, Q H MENG, M T LI et al. A low temperature approach for photo/cathodoluminescent Gd2O2S:Tb (GOS:Tb) nanophosphors. Journal of the American Ceramic Society, 3296(2018).
[36] Q LIU, F WU, X P CHEN et al. Fabrication of Gd2O2S:Pr scintillation ceramics from water-bath synthesized nanopowders. Optical Materials, 104: 109946(2020).
[37] X J WANG, X J WANG, Z H WANG et al. Photo/cathodoluminescence and stability of Gd2O2S:Tb,Pr green phosphor hexagons calcined from layered hydroxide sulfate. Journal of the American Ceramic Society, 5477(2018).
[38] H M PAN, Q LIU, X P CHEN et al. Fabrication and properties of Gd2O2S:Tb scintillation ceramics for the high-resolution neutron imaging. Optical Materials, 105: 109909(2020).
[39] X J WANG, J G LI, M S MOLOKEEV et al. Layered hydroxyl sulfate: controlled crystallization, structure analysis, and green derivation of multi-color luminescent (La,RE)2O2SO4 and (La,RE)2O2S phosphors (RE=Pr, Sm, Eu, Tb, and Dy). Chemical Engineering Journal, 302: 577(2016).
[40] X WANG, J G LI, Q ZHU et al. Facile and green synthesis of (La0.95Eu0.05)2O2S red phosphors with sulfate-ion pillared layered hydroxides as a new type of precursor: controlled hydrothermal processing, phase evolution and photoluminescence. Science and Technology of Advanced Materials, 014204(2014).
[41] P JIANG, Z P LI, W LU et al. The pH value control of morphology and luminescence properties of Gd2O2S: Tb3+ phosphors. Materials, 646(2022).
[42] J LEPPERT. Method for Producing Rare Earth Oxysulfide Powder. United States, 10.02.
[43] S TERAZAWA, H NITTA. Production Method of Rare Earth Oxysulfide, Ceramic Scintillator and Its Production Method, Scintillator Array, and Radiation Detector. United States, 02.20.
[44] N PAWLIK, B SZPIKOWSKA-SROKA, E PIETRASIK et al. Photoluminescence and energy transfer in transparent glass-ceramics based on GdF3:RE3+ (RE = Tb, Eu) nanocrystals. Journal of Rare Earths, 1137(2019).