• Journal of Inorganic Materials
  • Vol. 38, Issue 4, 452 (2023)
Junlin WU1,2, Jiyang DING1,3, Xinyou HUANG3, Danyang ZHU1,2..., Dong HUANG1,3, Zhengfa DAI1, Wenqin YANG4,5, Xingfen JIANG4,5, Jianrong ZHOU4,5, Zhijia SUN4,5 and Jiang LI1,2,*|Show fewer author(s)
Author Affiliations
  • 11. Key Laboratory of Transparent Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
  • 22. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 33. School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
  • 44. Spallation Neutron Source Science Center, Dongguan 523803, China
  • 55. State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.15541/jim20220542 Cite this Article
    Junlin WU, Jiyang DING, Xinyou HUANG, Danyang ZHU, Dong HUANG, Zhengfa DAI, Wenqin YANG, Xingfen JIANG, Jianrong ZHOU, Zhijia SUN, Jiang LI. Fabrication and Microstructure of Gd2O2S:Tb Scintillation Ceramics from Water-bath Synthesized Nano-powders: Influence of H2SO4/Gd2O3 Molar Ratio [J]. Journal of Inorganic Materials, 2023, 38(4): 452 Copy Citation Text show less
    References

    [1] T YANAGIDA. Inorganic scintillating materials and scintillation detectors. Proceedings of the Japan Academy Series B Physical and Biological Sciences, 75(2018).

    [2] EIJK C W E VAN, A BESSIèRE, P DORENBOS. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 260(2004).

    [3] J LI, T F XIE, H M KOU et al. Effect of trace SiO2 addition on optical and scintillation property of Pr:Lu3Al5O12 ceramics. Journal of Inorganic Materials, 796(2019).

    [4] A IKESUE. Processing of Ceramics:Breakthroughs in Optical Materials, 141(2021).

    [5] Z X QU, C J YU, Y T WEI et al. Thermal conductivity of boron carbide under fast neutron irradiation. Journal of Advanced Ceramics, 482(2022).

    [6] A A KHARIEKY, K R EBRAHIM SARAEE. Synthesis and characterization of radio and thermoluminescence properties of Sm doped Gd2O3, Gd2O2S and Gd2O2SO4 nanocrystalline phosphors. Journal of Luminescence, 220: 116979(2020).

    [7] B F QIAN, Y L WANG, Q R ZHAO et al. Adjustable multi-color luminescence and energy transfer of capsule-shaped Gd2O2S: Tb3+, Sm3+ phosphors. Journal of Luminescence, 244: 118715(2022).

    [8] W WANG, H M KOU, S P LIU et al. Optical and scintillation properties of Gd2O2S: Pr, Ce, F ceramics fabricated by spark plasma sintering. Ceramics International, 2576(2015).

    [9] S BLAHUTA, B VIANA, A BESSIèRE et al. Luminescence quenching processes in Gd2O2S:Pr3+,Ce3+ scintillating ceramics. Optical Materials, 1514(2011).

    [10] W WANG, H M KOU, S P LIU et al. Comparison of the optical and scintillation properties of Gd2O2S: Pr, Ce ceramics fabricated by hot pressing and pressureless sintering. Optical Materials, 42: 199(2015).

    [11] A BAGHERI, EBRAHIM SARAEE K REZAEE, H R SHAKUR et al. Synthesis and characterization of physical properties of Gd2O2S:Pr3+ semi-nanoflower phosphor. Applied Physics A, 553(2016).

    [12] E J POPOVICI, L MURESAN, A HRISTEA-SIMOC et al. Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S:Tb phosphor by the flux method. Optical Materials, 559(2004).

    [13] Y H ZHAN, F R AI, F CHEN et al. Intrinsically zirconium-89 labeled Gd2O2S:Eu nanoprobes for in vivo positron emission tomography and gamma-ray-induced radioluminescence imaging. Small, 2872(2016).

    [14] P TRTIK, J HOVIND, C GRüNZWEIG et al. Improving the spatial resolution of neutron imaging at Paul Scherrer Institut-The Neutron Microscope Project. Physics Procedia, 69: 169(2015).

    [15] F WANG, B YANG, J C ZHANG et al. Highly enhanced luminescence of Tb3+-activated gadolinium oxysulfide phosphor by doping with Zn2+ ions. Journal of Luminescence, 473(2010).

    [16] L CHEN, Y WU, H Y HUO et al. Nanoscale Gd2O2S:Tb scintillators for high-resolution fluorescent imaging of cold neutrons. ACS Applied Nano Materials, 8440(2022).

    [17] I KANDARAKIS, D CAVOURAS. Experimental and theoretical assessment of the performance of Gd2O2S:Tb and La2O2S:Tb phosphors and Gd2O2S:Tb-La2O2S:Tb mixtures for X-ray imaging. European Radiology, 1083(2001).

    [18] P TRTIK, E H LEHMANN. Progress in high-resolution neutron imaging at the Paul Scherrer Institut-The Neutron Microscope Project. Journal of Physics: Conference Series(2016).

    [19] X YAN, G R FERN, R WITHNALL et al. Effects of the host lattice and doping concentration on the colour of Tb3+ cation emission in Y2O2S:Tb3+ and Gd2O2S:Tb3+ nanometer sized phosphor particles. Nanoscale, 8640(2013).

    [20] G E GIAKOUMAKIS, C D NOMICOS, P X SANDILOS. Absolute efficiency of Gd2O2S:Tb screens under fluoroscopic conditions. Physics in Medicine and Biology, 673(1989).

    [21] E R WESTPHAL, A D BROWN, E C QUINTANA et al. Visible emission spectra of thermographic phosphors under X-ray excitation. Measurement Science and Technology, 094008(2021).

    [22] W WANG, Y S LI, H M KOU et al. Gd2O2S: Pr scintillation ceramics from powder synthesized by a novel carbothermal reduction method. Journal of the American Ceramic Society, 2159(2015).

    [23] P TRTIK, E H LEHMANN. Isotopically-enriched gadolinium-157 oxysulfide scintillator screens for the high-resolution neutron imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 788: 67(2015).

    [24] R YASUDA, M KATAGIRI, M MATSUBAYASHI. Influence of powder particle size and scintillator layer thickness on the performance of Gd2O2S:Tb scintillators for neutron imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 680: 139(2012).

    [25] V KATARIA, D S MEHTA. Multispectral harvesting rare-earth oxysulphide based highly efficient transparent luminescent solar concentrator. Journal of Rare Earths, 41(2022).

    [26] X Y HUANG, J Y DING, J LI. Rare earth doped Gd2O2S scintillation ceramics. Journal of Inorganic Materials, 789(2021).

    [27] J H DANIEL, A SAWANT, M TEEPE et al. Fabrication of high aspect-ratio polymer microstructures for large-area electronic portal X-ray imagers. Sensors and Actuators A-Physical, 185(2007).

    [28] G Q WU, H M QIN, S W FENG et al. Ultrafine Gd2O2S:Pr powders prepared via urea precipitation method using SO2/SO42- as sulfuration agent—a comparative study. Powder Technology, 305: 382(2017).

    [29] C HE, Z G XIA, Q L LIU. Microwave solid state synthesis and luminescence properties of green-emitting Gd2O2S:Tb3+ phosphor. Optical Materials, 42: 11(2015).

    [30] R G PEARSON. Hard and soft acids and bases. Journal of the American Chemical Society, 3533(1963).

    [31] Y J DING, P D HAN, L X WANG et al. Preparation, morphology and luminescence properties of Gd2O2S:Tb with different Gd2O3 raw materials. Rare Metals, 221(2015).

    [32] Y H SONG, H P YOU, Y J HUANG et al. Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties. Inorganic Chemistry, 11499(2010).

    [33] P D HAN, L ZHANG, L X WANG et al. Investigation on the amounts of Na2CO3 and sulphur to obtain pure Y2O2S and up-conversion luminescence of Y2O2S:Er. Journal of Rare Earths, 849(2011).

    [34] Q LIU, H M PAN, X P CHEN et al. Gd2O2S:Tb scintillation ceramics fabricated from high sinterability nanopowders via hydrogen reduction. Optical Materials, 94: 299(2019).

    [35] X J WANG, Q H MENG, M T LI et al. A low temperature approach for photo/cathodoluminescent Gd2O2S:Tb (GOS:Tb) nanophosphors. Journal of the American Ceramic Society, 3296(2018).

    [36] Q LIU, F WU, X P CHEN et al. Fabrication of Gd2O2S:Pr scintillation ceramics from water-bath synthesized nanopowders. Optical Materials, 104: 109946(2020).

    [37] X J WANG, X J WANG, Z H WANG et al. Photo/cathodoluminescence and stability of Gd2O2S:Tb,Pr green phosphor hexagons calcined from layered hydroxide sulfate. Journal of the American Ceramic Society, 5477(2018).

    [38] H M PAN, Q LIU, X P CHEN et al. Fabrication and properties of Gd2O2S:Tb scintillation ceramics for the high-resolution neutron imaging. Optical Materials, 105: 109909(2020).

    [39] X J WANG, J G LI, M S MOLOKEEV et al. Layered hydroxyl sulfate: controlled crystallization, structure analysis, and green derivation of multi-color luminescent (La,RE)2O2SO4 and (La,RE)2O2S phosphors (RE=Pr, Sm, Eu, Tb, and Dy). Chemical Engineering Journal, 302: 577(2016).

    [40] X WANG, J G LI, Q ZHU et al. Facile and green synthesis of (La0.95Eu0.05)2O2S red phosphors with sulfate-ion pillared layered hydroxides as a new type of precursor: controlled hydrothermal processing, phase evolution and photoluminescence. Science and Technology of Advanced Materials, 014204(2014).

    [41] P JIANG, Z P LI, W LU et al. The pH value control of morphology and luminescence properties of Gd2O2S: Tb3+ phosphors. Materials, 646(2022).

    [42] J LEPPERT. Method for Producing Rare Earth Oxysulfide Powder. United States, 10.02.

    [43] S TERAZAWA, H NITTA. Production Method of Rare Earth Oxysulfide, Ceramic Scintillator and Its Production Method, Scintillator Array, and Radiation Detector. United States, 02.20.

    [44] N PAWLIK, B SZPIKOWSKA-SROKA, E PIETRASIK et al. Photoluminescence and energy transfer in transparent glass-ceramics based on GdF3:RE3+ (RE = Tb, Eu) nanocrystals. Journal of Rare Earths, 1137(2019).

    Junlin WU, Jiyang DING, Xinyou HUANG, Danyang ZHU, Dong HUANG, Zhengfa DAI, Wenqin YANG, Xingfen JIANG, Jianrong ZHOU, Zhijia SUN, Jiang LI. Fabrication and Microstructure of Gd2O2S:Tb Scintillation Ceramics from Water-bath Synthesized Nano-powders: Influence of H2SO4/Gd2O3 Molar Ratio [J]. Journal of Inorganic Materials, 2023, 38(4): 452
    Download Citation