[1] M. K. K. Niazi, A. V. Parwani, M. N. Gurcan. Digital pathology and artificial intelligence. Lancet Oncol., 20, e253-e261(2019).
[2] N. Kumar, R. Gupta, S. Gupta. Whole slide imaging (WSI) in pathology: current perspectives and future directions. J. Digit. Imaging, 33, 1034-1040(2020).
[3] R. Brixtel et al. Whole slide image quality in digital pathology: review and perspectives. IEEE Access, 10, 131005-131035(2022).
[4] K. Guo et al. InstantScope: a low-cost whole slide imaging system with instant focal plane detection. Biomed. Opt. Express, 6, 3210-3216(2015).
[5] C. Guo et al. OpenWSI: a low-cost, high-throughput whole slide imaging system via single-frame autofocusing and open-source hardware. Opt. Lett., 45, 260-263(2019).
[6] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739-745(2013).
[7] A. Pan, C. Zuo, B. Yao. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine. Rep. Prog. Phys., 83, 096101(2020).
[8] S. Jiang et al. Spatial-and Fourier-domain ptychography for high-throughput bio-imaging. Nat. Protoc., 18, 2051-2083(2023).
[9] X. Ou, G. Zheng, C. Yang. Embedded pupil function recovery for Fourier ptychographic microscopy. Opt. Express, 22, 4960-4972(2014).
[10] Y. Chen, J. Xu, A. Pan. Depth-of-field extended Fourier ptychographic microscopy without defocus distance priori. Opt. Lett., 49, 3222-3225(2024).
[11] R. Horstmeyer et al. Digital pathology with Fourier ptychography. Comput. Med. Imaging Graph., 42, 38-43(2015).
[12] M. Valentino et al. Beyond conventional microscopy: observing kidney tissues by means of Fourier ptychography. Front. Physiol., 14, 1120099(2023).
[13] A. C. Chan et al. Parallel Fourier ptychographic microscopy for high-throughput screening with 96 cameras (96 eyes). Sci. Rep., 9, 11114(2019).
[14] Y. Shu et al. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy. PhotoniX, 3, 24(2022).
[15] R. Horstmeyer et al. Diffraction tomography with Fourier ptychography. Optica, 3, 827-835(2016).
[16] S. Xu et al. Tensorial tomographic Fourier ptychography with applications to muscle tissue imaging. Adv. Photonics, 6, 026004-026004(2024).
[17] A. Pan et al. Vignetting effect in Fourier ptychographic microscopy. Opt. Lasers Eng., 120, 40-48(2019).
[18] T. Feng et al. Linear-space-variant model for Fourier ptychographic microscopy. Opt. Lett., 49, 2617-2620(2024).
[19] S. Zhang et al. FPM-WSI: Fourier ptychographic whole slide imaging via feature-domain backdiffraction. Optica, 11, 634-646(2024).
[20] K. Zhang et al. Using symmetric illumination and color camera to achieve high throughput Fourier ptychographic microscopy. J. Biophotonics, 16, e202200303(2023).
[21] J. Sun et al. Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography. Opt. Lett., 43, 3365-3368(2018).
[22] M. Wang et al. A color-corrected strategy for information multiplexed Fourier ptychographic imaging. Opt. Commun., 405, 406-411(2017).
[23] Y. Zhou et al. Fourier ptychographic microscopy using wavelength multiplexing. J. Biomed. Opt., 22, 066006(2017).
[24] J. Zhang et al. Efficient colorful Fourier ptychographic microscopy reconstruction with wavelet fusion. IEEE Access, 6, 31729-31739(2018).
[25] Y. Gao et al. High-throughput fast full-color digital pathology based on Fourier ptychographic microscopy via color transfer. Sci. China Phys. Mech. Astron., 64, 114211(2021).
[26] J. Chen et al. Rapid full-color Fourier ptychographic microscopy via spatially filtered color transfer. Photonics Res., 10, 2410-2421(2022).
[27] J. Zhen et al. Fast color Fourier ptychographic microscopy based on spatial filtering frequency fusion. Opt. Laser Technol., 181, 112054(2025).
[28] R. Wang et al. Virtual brightfield and fluorescence staining for Fourier ptychography via unsupervised deep learning. Opt. Lett., 45, 5405-5408(2020).
[29] Y. Rivenson et al. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat. Biomed. Eng., 3, 466-477(2019).
[30] Y. Zhang et al. Digital synthesis of histological stains using micro-structured and multiplexed virtual staining of label-free tissue. Light Sci. Appl., 9, 78(2020).
[31] Y. Wang et al. A virtual staining method based on self-supervised GAN for Fourier ptychographic microscopy colorful imaging. Appl. Sci., 14, 1662(2024).
[32] G.-Z. Yang et al. Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. Appl. Opt., 33, 209-218(1994).
[33] R. S. Ledley, M. Buas, T. J. Golab. Fundamentals of true-color image processing, 791-795(1990).
[34] W. Carper et al. The use of intensity-hue-saturation transformations for merging spot panchromatic and multispectral image data. Photogramm. Eng. Remote Sens., 56, 459-467(1990).
[35] T.-M. Tu et al. A new look at IHS-like image fusion methods. Inf. Fusion, 2, 177-186(2001).
[36] Z.-M. Zhou et al. Joint IHS and variational methods for pan-sharpening of very high resolution imagery, 2597-2600(2013).
[37] Y. Song et al. An adaptive pansharpening method by using weighted least squares filter. IEEE Geosci. Remote Sens. Lett., 13, 18-22(2015).
[38] P. Liu, L. Xiao. A novel generalized intensity-hue-saturation (GIHS) based pan-sharpening method with variational Hessian transferring. IEEE Access, 6, 46751-46761(2018).
[39] Y. Fan et al. Efficient synthetic aperture for phaseless Fourier ptychographic microscopy with hybrid coherent and incoherent illumination. Laser Photonics Rev., 17, 2200201(2023).
[40] D.-Y. Tsai, Y. Lee, E. Matsuyama. Information entropy measure for evaluation of image quality. J. Digit. Imaging, 21, 338-347(2008).
[41] C.-C. Weng, H. Chen, C.-S. Fuh. A novel automatic white balance method for digital still cameras, 3801-3804(2005).
[42] G. M. Johnson, M. D. Fairchild. A top down description of S-CIELAB and CIEDE2000. Color Res. Appl., 28, 425-435(2003).
[43] S. Sural, G. Qian, S. Pramanik. Segmentation and histogram generation using the HSV color space for image retrieval, II(2002).
[44] A. R. Weeks, C. E. Felix, H. R. Myler. Edge detection of color images using the HSL color space. Proc. SPIE, 2424, 291-301(1995).
[45] C. Li et al. A revision of CIECAM02 and its CAT and UCS, 208-212(2016).
[46] W. W. Hager, H. Zhang. A survey of nonlinear conjugate gradient methods. Pac. J. Optim., 2, 35-58(2006).
[47] D. P. Kingma. Adam: a method for stochastic optimization(2014).
[48] X. Xie et al. Adan: adaptive Nesterov momentum algorithm for faster optimizing deep models. IEEE Trans. Pattern Anal. Mach. Intell., 46, 9508-9520(2024).
[49] J. Chung et al. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography. Biomed. Opt. Express, 7, 352-368(2016).
[50] J. W. Goodman. Introduction to Fourier optics(2005).
[51] A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method. Sov. Dok., 4, 1035-1038(1963).
[52] A. Toet, M. P. Lucassen. A new universal colour image fidelity metric. Displays, 24, 197-207(2003).
[53] C. Shi, Y. Lin, X. Cao. No reference image sharpness assessment based on global color difference variation. Chin. J. Electron., 33, 293-302(2024).
[54] K. Panetta, C. Gao, S. Agaian. No reference color image contrast and quality measures. IEEE Trans. Consum. Electron., 59, 643-651(2013).
[55] M. S. Hosseini et al. Focus quality assessment of high-throughput whole slide imaging in digital pathology. IEEE Trans. Med. Imaging, 39, 62-74(2019).
[56] et al. Studio Encoding Parameters of Digital Television for Standard 4:3 and Wide-Screen 16:9 Aspect Ratios(2011).
[57] . Parameter Values for the HDTV Standards for Production and International Programme Exchange(2002).
[58] Parameter values for ultra-high definition television systems for production and international programme exchange, 1-7(2012).
[59] R. M. Haralick, L. Shapiro. Computer and Robot Vision, 1(1992).