• Acta Optica Sinica
  • Vol. 45, Issue 5, 0528002 (2025)
Xue Li, Dong Li*, Jiandong Fang, and Xueying Feng
Author Affiliations
  • College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010080, Inner Mongolia , China
  • show less
    DOI: 10.3788/AOS241826 Cite this Article Set citation alerts
    Xue Li, Dong Li, Jiandong Fang, Xueying Feng. Remote Sensing Image Change Detection Method Based on Change Guidance and Bidirectional Mamba Network[J]. Acta Optica Sinica, 2025, 45(5): 0528002 Copy Citation Text show less
    References

    [1] Wang S, Han W, Huang X H et al. Trustworthy remote sensing interpretation: Concepts, technologies, and applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 209, 150-172(2024).

    [2] Zhang L F, Zhang L P. Artificial intelligence for remote sensing data analysis: a review of challenges and opportunities[J]. IEEE Geoscience and Remote Sensing Magazine, 10, 270-294(2022).

    [3] Chen Q, Chen Y H, Jiang W G. Genetic particle swarm optimization-based feature selection for very-high-resolution remotely sensed imagery object change detection[J]. Sensors, 16, 1204(2016).

    [4] Wu Y, Gong M G, Miao Q G et al. Computational intelligence in remote sensing[J]. Remote Sensing, 15, 5325(2023).

    [5] Marin C, Bovolo F, Bruzzone L. Building change detection in multitemporal very high resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 2664-2682(2015).

    [6] Demir B, Bovolo F, Bruzzone L. Updating land-cover maps by classification of image time series: a novel change-detection-driven transfer learning approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 51, 300-312(2013).

    [7] Chen C F, Son N T, Chang N B et al. Multi-decadal mangrove forest change detection and prediction in Honduras, central America, with landsat imagery and a Markov chain model[J]. Remote Sensing, 5, 6408-6426(2013).

    [8] Daudt R C, Le Saux B, Boulch A. Fully convolutional Siamese networks for change detection[C]. Greece, 4063-4067(2018).

    [9] Zhang Z Y, Liu A, Reid I et al. Motion Mamba: efficient and long sequence motion generation[M]. Computer vision‒ECCV 2024, 15059, 265-282(2024).

    [10] Chen H, Shi Z W. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 12, 1662(2020).

    [11] Fang S, Li K Y, Shao J Y et al. SNUNet-CD: a densely connected Siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 19, 8007805(2021).

    [12] Liu Y, Guo H T, Lu J et al. Remote sensing image change detection method based on adaptive boundary sensing[J]. Acta Optica Sinica, 44, 1828009(2024).

    [13] Yao Q F, Ning Y X, Du S W. Change detection of optical and synthetic aperture radar remote sensing images based on a domain adaptive neural network[J]. Laser & Optoelectronics Progress, 61, 1828001(2024).

    [14] Bandara W G C, Patel V M. A transformer-based Siamese network for change detection[C], 207-210(2022).

    [15] Zheng Z, Ma A L, Zhang L P et al. Change is everywhere: single-temporal supervised object change detection in remote sensing imagery[C], 15173-15182(2021).

    [16] Liu Z, Lin Y T, Cao Y et al. Swin transformer: hierarchical vision transformer using shifted windows[C], 9992-10002(2021).

    [17] Chen H, Wu C, Du B et al. Change detection in multisource VHR images via deep Siamese convolutional multiple-layers recurrent neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 2848-2864(2020).

    [18] Liu H. Nd-BiMamba2: a unified bidirectional architecture for multi-dimensional data[EB/OL]. https:∥arxiv.org/abs/2411.15380

    [19] Zhu L H, Liao B C, Zhang Q et al. Vision Mamba: efficient visual representation learning with bidirectional state space model[EB/OL]. https:∥openreview.net/pdf?id=YbHCqn4qF4

    [20] Gu A, Johnson I, Goel K et al. Combining recurrent, convolutional, and continuous-time models with linear state-space layers[EB/OL]. https:∥arxiv.org/abs/2110.13985

    [21] Du W L, Gu Y, Zhao J Q et al. A Mamba-diffusion framework for multimodal remote sensing image semantic segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 21, 6016905(2024).

    [22] Chen H, Song J, Han C X et al. ChangeMamba: remote sensing change detection with spatiotemporal state space model[J]. IEEE Transactions on Geoscience and Remote Sensing, 62, 4409720(2024).

    [23] Hue N T, Anh L H, Hung V V et al. ConvMamba: a data-efficient neural network for bearing fault diagnosis[C]. Vietnam, 165-172(2024).

    [24] Goel K, Gu A, Donahue C et al. It’s Raw![EB/OL]. https:∥arxiv.org/abs/2202.09729

    [25] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [26] Ma X W, Yang J W, Che R et al. DDLNet: boosting remote sensing change detection with dual-domain learning[C], 15-19(2024).

    [27] Liu M X, Chai Z Q, Deng H J et al. A CNN-transformer network with multiscale context aggregation for fine-grained cropland change detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 4297-4306(2022).

    [28] Shi Q, Liu M X, Li S C et al. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5604816(2021).

    [29] Shen L, Lu Y, Chen H et al. S2Looking: A satellite side-looking dataset for building change detection[J]. Remote Sensing, 13, 5094(2021).

    [30] Chen H, Qi Z P, Shi Z W. Remote sensing image change detection with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5607514(2022).

    [31] Lei T, Geng X Z, Ning H L et al. Ultralightweight spatial–spectral feature cooperation network for change detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 61, 4402114(2023).

    Xue Li, Dong Li, Jiandong Fang, Xueying Feng. Remote Sensing Image Change Detection Method Based on Change Guidance and Bidirectional Mamba Network[J]. Acta Optica Sinica, 2025, 45(5): 0528002
    Download Citation