• Acta Optica Sinica
  • Vol. 45, Issue 5, 0528003 (2025)
Changzhen Xiong1, Xiyu Li1,*, Heyi Zhao2, and Songming Xie1
Author Affiliations
  • 1School of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China
  • 2School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
  • show less
    DOI: 10.3788/AOS241848 Cite this Article Set citation alerts
    Changzhen Xiong, Xiyu Li, Heyi Zhao, Songming Xie. Lightweight Multi‑Scale Synthetic Aperture Radar Ship Detection Algorithm[J]. Acta Optica Sinica, 2025, 45(5): 0528003 Copy Citation Text show less
    Network structure of proposed algorithm
    Fig. 1. Network structure of proposed algorithm
    Structures of Conv, bottleneck, and C2f
    Fig. 2. Structures of Conv, bottleneck, and C2f
    Structure of MSPPF
    Fig. 3. Structure of MSPPF
    Structure of EMA
    Fig. 4. Structure of EMA
    Structure of LSCH
    Fig. 5. Structure of LSCH
    Comparisons of detection results between YOLOv8 and proposed algorithm on HRSID dataset
    Fig. 6. Comparisons of detection results between YOLOv8 and proposed algorithm on HRSID dataset
    DatasetLSCHMSPPFFocaler-ShapeIoUParams /MFLOPs /GP /%R /%AP_0.5 /%AP_0.5∶0.95 /%
    HRSID3.08.291.082.090.565.8
    2.26.190.982.391.066.6
    2.36.392.383.891.767.2
    2.36.392.584.092.067.6
    SSDD3.08.294.991.497.069.1
    2.26.194.891.998.270.1
    2.36.395.894.498.472.0
    2.36.396.194.198.672.2
    Table 1. Results of ablation experiments on HRSID and SSDD datasets
    DatasetMethodFocalerAP_0.5 /%AP_0.5∶0.95 /%
    HRSIDCIoU×91.767.2
    91.967.4
    SIoU×91.667.1
    91.767.2
    ShapeIoU×91.867.3
    92.167.6
    SSDDCIoU×98.472.0
    98.572.1
    SIoU×98.372.0
    98.472.2
    ShapeIoU×98.572.1
    98.672.2
    Table 2. Results of contrast experiments on loss functions
    DatasetAlgorithmParams /MFLOPs /GP /%R /%AP_0.5 /%AP_0.5∶0.95 /%
    HRSIDFaster R-CNN41.4134.482.490.588.0
    Libra R-CNN42.8141.383.689.788.8
    YOLOv3103.7283.090.384.091.066.3
    YOLOv8n3.08.291.082.090.565.8
    FCOS32.1126.062.986.184.5
    FENDet120.679.088.789.9
    GCBANet948.089.8
    FL-CSEvROIE107.690.2
    YOLO-CLF91.883.790.462.7
    MCMA-Net80.488.987.4
    Ours2.36.392.584.092.067.6
    SSDDFaster R-CNN41.4134.467.294.589.5
    Libra R-CNN42.8141.366.894.788.9
    YOLOv3103.7283.090.793.795.070.2
    YOLOv8n3.08.294.991.497.069.1
    FCOS32.1126.084.793.895.8
    FENDet120.695.894.495.9
    GCBANet948.095.4
    FL-CSE-ROIE107.695.9
    YOLO-CLF95.093.798.263.1
    MCMA-Net84.797.996.6
    Ours2.36.396.194.198.672.2
    Table 3. Contrast experimental results on HRSID and SSDD datasets
    DatasetInput sizeModelAP_0.5 /%AP_0.5∶0.95 /%
    HRSID320YOLOv877.652.6
    Ours79.053.3
    480YOLOv886.260.1
    Ours88.463.3
    640YOLOv890.565.8
    Ours92.067.6
    SAR-Ship-Dataset320YOLOv892.454.6
    Ours92.655.0
    480YOLOv892.254.0
    Ours92.555.3
    640YOLOv891.153.5
    Ours91.654.8
    SSDD320YOLOv894.066.2
    Ours94.865.1
    480YOLOv897.270.0
    Ours97.470.2
    640YOLOv897.069.1
    Ours98.672.2
    Table 4. Contrast experimental results at different resolutions
    Changzhen Xiong, Xiyu Li, Heyi Zhao, Songming Xie. Lightweight Multi‑Scale Synthetic Aperture Radar Ship Detection Algorithm[J]. Acta Optica Sinica, 2025, 45(5): 0528003
    Download Citation