• Opto-Electronic Science
  • Vol. 3, Issue 11, 230049-1 (2024)
Shreeya Rane, Shriganesh Prabhu, and Dibakar Roy Chowdhury*
DOI: 10.29026/oes.2024.230049 Cite this Article
Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury. Physics and applications of terahertz metagratings[J]. Opto-Electronic Science, 2024, 3(11): 230049-1 Copy Citation Text show less
References

[1] P Cheben, R Halir, JH Schmid et al. Subwavelength integrated photonics. Nature, 560, 565-572(2018).

[2] G Shvets, S Trendafilov, JB Pendry et al. Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays. Phys Rev Lett, 99, 053903(2007).

[3] XG Luo. Subwavelength optical engineering with metasurface waves. Adv Opt Mater, 6, 1701201(2018).

[4] XG Luo. Subwavelength artificial structures: opening a new era for engineering optics. Adv Mater, 31, 1804680(2019).

[5] XG Luo, MB Pu, YH Guo et al. Electromagnetic architectures: structures, properties, functions and their intrinsic relationships in subwavelength optics and electromagnetics. Adv Photonics Res, 2, 2100023(2021).

[6] J Canet-Ferrer. Metamaterials and Metasurfaces(2019). http://doi.org/10.5772/intechopen.73359

[7] AK Iyer, A Alù, A Epstein. Metamaterials and metasurfaces—historical context, recent advances, and future directions. IEEE Trans Antennas Propag, 68, 1223-1231(2020).

[8] CM Soukoulis, M Wegener. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics, 5, 523-530(2011).

[9] A Ali, A Mitra, B Aïssa. Metamaterials and metasurfaces: a review from the perspectives of materials, mechanisms and advanced metadevices. Nanomaterials, 12, 1027(2022).

[10] F Ding, A Pors, SI Bozhevolnyi. Gradient metasurfaces: a review of fundamentals and applications. Rep Prog Phys, 81, 026401(2018).

[11] SY Xiao, T Wang, TT Liu et al. Active metamaterials and metadevices: a review. J Phys D Appl Phys, 53, 503002(2020).

[12] W Withayachumnankul, D Abbott. Metamaterials in the terahertz regime. IEEE Photonics J, 1, 99-118(2009).

[13] HT Chen, WJ Padilla, JMO Zide et al. Active terahertz metamaterial devices. Nature, 444, 597-600(2006).

[14] HT Chen, JF O'Hara, AJ Taylor et al. Complementary planar terahertz metamaterials. Opt Express, 15, 1084-1095(2007).

[15] R Singh, E Smirnova, AJ Taylor et al. Optically thin terahertz metamaterials. Opt Express, 16, 6537-6543(2008).

[16] YM Liu, X Zhang. Metamaterials: a new frontier of science and technology. Chem Soc Rev, 40, 2494-2507(2011).

[17] DR Smith, D Schurig. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys Rev Lett, 90, 077405(2003).

[18] D Kumar, KM Devi, R Kumar et al. Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces. Opt Commun, 491, 126949(2021).

[19] KNI Krishna, KM Devi, DR Chowdhury. Graphene and metal hybridized terahertz metasurfaces toward tunable plasmon-induced transparency effects. Curr Appl Phys, 39, 158-165(2022).

[20] JQ Gu, JG Han, XC Lu et al. A close-ring pair terahertz metamaterial resonating at normal incidence. Opt Express, 17, 20307-20312(2009).

[21] YZ Shi, QH Song, I Toftul et al. Optical manipulation with metamaterial structures. Appl Phys Rev, 9, 031303(2022).

[22] WX Lim, M Manjappa, P Pitchappa et al. Shaping high‐Q planar fano resonant metamaterials toward futuristic technologies. Adv Opt Mater, 6, 1800502(2018).

[23] JB Pendry. Negative refraction makes a perfect lens. Phys Rev Lett, 85, 3966-3969(2000).

[24] RA Shelby, DR Smith, S Schultz. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

[25] DR Smith, WJ Padilla, DC Vier et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett, 84, 4184-4187(2000).

[26] QN Wu, HH Chen, YY Cao et al. Broadband optical negative refraction based on dielectric phase gradient metagratings. J Phys D Appl Phys, 54, 445101(2021).

[27] N Fang, H Lee, C Sun et al. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

[28] D Schurig, JJ Mock, BJ Justice et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

[29] SB Glybovski, SA Tretyakov, PA Belov et al. Metasurfaces: from microwaves to visible. Phys Rep, 634, 1-72(2016).

[30] B Assouar, B Liang, Y Wu et al. Acoustic metasurfaces. Nat Rev Mater, 3, 460-472(2018).

[31] S Karmakar, D Kumar, RK Varshney et al. Strong terahertz matter interaction induced ultrasensitive sensing in Fano cavity based stacked metamaterials. J Phys D Appl Phys, 53, 415101(2020).

[32] YY Cao, YY Fu, JH Jiang et al. Scattering of light with orbital angular momentum from a metallic meta-cylinder with engineered topological charge. ACS Photonics, 8, 2027-2032(2021).

[33] HT Chen, AJ Taylor, NF Yu. A review of metasurfaces: physics and applications. Rep Prog Phys, 79, 076401(2016).

[34] XF Zang, BS Yao, L Chen et al. Metasurfaces for manipulating terahertz waves. Light Adv Manuf, 2, 10(2021).

[35] YY Fu, JQ Tao, AL Song et al. Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings. Front Phys, 15, 52502(2020).

[36] YD Xu, Y Wang, QJ Zhou et al. Unidirectional manipulation of Smith–Purcell radiation by phase-gradient metasurfaces. Opt Lett, 48, 4133-4136(2023).

[37] YH Guo, LS Yan, W Pan et al. Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion. Sci Rep, 6, 30154(2016).

[38] KM Devi, A Jana, A Punjal et al. Polarization-independent tunable terahertz slow light with electromagnetically induced transparency metasurface. New J Phys, 24, 093004(2022).

[39] G Rana, P Deshmukh, S Palkhivala et al. Quadrupole-quadrupole interactions to control plasmon-induced transparency. Phys Rev Appl, 9, 064015(2018).

[40] SJM Rao, R Sarkar, G Kumar et al. Gradual cross polarization conversion of transmitted waves in near field coupled planar terahertz metamaterials. OSA Contin, 2, 603-614(2019).

[41] HL Zhu, SW Cheung, KL Chung et al. Linear-to-circular polarization conversion using metasurface. IEEE Trans Antennas Propag, 61, 4615-4623(2013).

[42] S Bhattacharyya, S Ghosh, KV Srivastava. A wideband cross polarization conversion using metasurface. Radio Sci, 52, 1395-1404(2017).

[43] PC Wu, R Sokhoyan, GK Shirmanesh et al. Near‐infrared active metasurface for dynamic polarization conversion. Adv Opt Mater, 9, 2100230(2021).

[44] KM Devi, A Jana, S Rane et al. Temperature tunable electromagnetically induced transparency in terahertz metasurface fabricated on ferroelectric platform. J Phys D Appl Phys, 55, 495103(2022).

[45] YH Xue, ZY Zhao, PL Liu et al. The impact of contact and contactless interactions between the meta-atoms on terahertz bound states in the continuum. J Phys D Appl Phys, 57, 055103(2024).

[46] NF Yu, P Genevet, MA Kats et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

[47] DR Chowdhury, JF O’Hara, AJ Taylor et al. Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials. Appl Phys Lett, 104, 101105(2014).

[48] A Jana, AC Khot, S Rane et al. Room-temperature-grown tungsten oxide hybridized dipole cavities to realize thermally tunable terahertz surface plasmons. Opt Mater, 143, 114274(2023).

[49] S Karmakar, RK Varshney, DR Chowdhury. Theoretical investigation of active modulation and enhancement of Fano resonance in THz metamaterials. OSA Contin, 2, 531-539(2019).

[50] S Karmakar, D Kumar, RK Varshney et al. Magnetospectroscopy of terahertz surface plasmons in subwavelength perforated superlattice thin-films. J Appl Phys, 131, 223102(2022).

[51] KM Devi, AK Sarma, DR Chowdhury et al. Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial. Opt Express, 25, 10484-10493(2017).

[52] S Mallick, N Chourasia, R Singh et al. Demonstration of toroidal metasurfaces through near-field coupling of bright-mode resonators. Appl Phys Express, 15, 012005(2022).

[53] R Singh, D Roy Chowdhury, J Xiong et al. Influence of film thickness in THz active metamaterial devices: a comparison between superconductor and metal split-ring resonators. Appl Phys Lett, 103, 061117(2013).

[54] S Rane, S Sharma, S Mallick et al. Sensing multiwall carbon nanotube film mediated by a Fano resonant terahertz metasurface. ACS Appl Opt Mater, 1, 2004-2012(2023).

[55] J Qin, SB Jiang, ZS Wang et al. Metasurface micro/nano-optical sensors: principles and applications. ACS Nano, 16, 11598-11618(2022).

[56] M Gupta, R Singh. Terahertz sensing with optimized Q/Veff metasurface cavities. Adv Opt Mater, 8, 1902025(2020).

[57] A Kumar, M Gupta, P Pitchappa et al. Topological sensor on a silicon chip. Appl Phys Lett, 121, 011101(2022).

[58] N Navaratna, YJ Tan, A Kumar et al. On-chip topological THz biosensors. Appl Phys Lett, 123, 033705(2023).

[59] XG Luo. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron, 58, 594201(2015).

[60] L Li, K Yao, ZJ Wang et al. Harnessing evanescent waves by bianisotropic metasurfaces. Laser Photonics Rev, 14, 1900244(2020).

[61] F de Fornel. Evanescent Waves: From Newtonian Optics to Atomic Optics(2001).

[62] E Vetsch, D Reitz, G Sagué et al. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys Rev Lett, 104, 203603(2010).

[63] YF Xiang, X Tang, CJ Min et al. Optical trapping with focused surface waves. Ann Phys, 532, 1900497(2020).

[64] V Eckhouse, Z Zalevsky, N Konforti et al. Subwavelength structure imaging. Opt Eng, 43, 2462-2468(2004).

[65] JQ Lu, ZY Chen, FF Pang et al. Theoretical analysis of fiber-optic evanescent wave sensors, 583-587(2008). http://doi.org/10.1109/CJMW.2008.4772500

[66] CA Villarruel, DD Dominguez, A Dandridge. Evanescent wave fiber optic chemical sensor, 225(1987). http://doi.org/10.1117/12.941110

[67] AM Hutchinson. Evanescent wave biosensors. Mol Biotechnol, 3, 47-54(1995).

[68] NP Mauranyapin, LS Madsen, MA Taylor et al. Evanescent single-molecule biosensing with quantum-limited precision. Nat Photonics, 11, 477-481(2017).

[69] CS Huertas, O Calvo-Lozano, A Mitchell et al. Advanced evanescent-wave optical biosensors for the detection of nucleic acids: an analytic perspective. Front Chem, 7, 724(2019).

[70] D Axelrod, NL Thompson, TP Burghardt. Total internal reflection fluorescent microscopy. J Microsc, 129, 19-28(1983).

[71] R Quidant, JC Weeber, A Dereux et al. Near-field observation of evanescent light wave coupling in subwavelength optical waveguides. Europhys Lett, 57, 191-197(2002).

[72] CJ Handmer, CM de Sterke, RC McPhedran et al. Blazing evanescent grating orders: a spectral approach to beating the Rayleigh limit. Opt Lett, 35, 2846-2848(2010).

[73] YB Ovchinnikov, I Manek, R Grimm. Surface trap for Cs atoms based on evanescent-wave cooling. Phys Rev Lett, 79, 2225-2228(1997).

[74] SH Rane, AS Punjal, SS Prabhu et al. Fourier transformed terahertz spectroscopy inspired detection of evanescent orders in all dielectric sub-wavelength grating. IEEE J Sel Top Quantum Electron, 29, 8500406(2023).

[75] A Leitenstorfer, AS Moskalenko, T Kampfrath et al. The 2023 terahertz science and technology roadmap. J Phys D Appl Phys, 56, 223001(2023).

[76] LR Vanderhoef, AK Azad, CC Bomberger et al. Charge carrier relaxation processes in TbAs nanoinclusions in GaAs measured by optical-pump THz-probe transient absorption spectroscopy. Phys Rev B, 89, 045418(2014).

[77] HJ Song, T Nagatsuma. Present and future of terahertz communications. IEEE Trans Terahertz Sci Technol, 1, 256-263(2011).

[78] GL Wu, HZ Gao, Y Wang et al. Terahertz technology and its biomedical application. Yangtze Med, 3, 157-162(2019).

[79] AI Nikitkina, P Bikmulina, ER Gafarova et al. Terahertz radiation and the skin: a review. J Biomed Opt, 26, 043005(2021).

[80] E Abraham, A Younus, JC Delagnes et al. Non-invasive investigation of art paintings by terahertz imaging. Appl Phys A, 100, 585-590(2010).

[81] H Guerboukha, K Nallappan, M Skorobogatiy. Toward real-time terahertz imaging. Adv Opt Photonics, 10, 843-938(2018).

[82] A Singh, S Pal, H Surdi et al. Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection. Opt Express, 23, 6656-6661(2015).

[83] A Gupta, G Rana, A Bhattacharya et al. Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation. APL Photonics, 3, 051706(2018).

[84] XY Yang, Z Tian, XY Chen et al. Terahertz single-pixel near-field imaging based on active tunable subwavelength metallic grating. Appl Phys Lett, 116, 241106(2020).

[85] RI Stantchev, X Yu, T Blu et al. Real-time terahertz imaging with a single-pixel detector. Nat Commun, 11, 2535(2020).

[86] C McDonnell, JH Deng, S Sideris et al. Terahertz metagrating emitters with beam steering and full linear polarization control. Nano Lett, 22, 2603-2610(2022).

[87] JR Cheng, XP Dong, S Chen et al. Terahertz metagrating accordion for dynamic beam steering. Adv Opt Mater, 10, 2200008(2022).

[88] F Sizov, A Rogalski. THz detectors. Prog Quantum Electron, 34, 278-347(2010).

[89] RA Lewis. A review of terahertz detectors. J Phys D Appl Phys, 52, 433001(2019).

[90] T Nagatsuma, G Ducournau, CC Renaud. Advances in terahertz communications accelerated by photonics. Nat Photonics, 10, 371-379(2016).

[91] T Kleine-Ostmann, T Nagatsuma. A review on terahertz communications research. J Infrared Millim Terahertz Waves, 32, 143-171(2011).

[92] ZT Ma, ZX Geng, ZY Fan et al. Modulators for terahertz communication: the current state of the art. Research, 2019, 6482975(2019).

[93] K Monika Devi, S Jana, D Roy Chowdhury. Topological edge states in an all-dielectric terahertz photonic crystal. Opt Mater Express, 11, 2445-2458(2021).

[94] G Cincotti. Polarization gratings: design and applications. IEEE J Quantum Electron, 39, 1645-1652(2003).

[95] SA Vasil’ev, OI Medvedkov, IG Korolev et al. Fibre gratings and their applications. Quantum Electron, 35, 1085-1103(2005).

[96] GH Derrick, RC McPhedran, D Maystre et al. Crossed gratings: a theory and its applications. Appl Phys, 18, 39-52(1979).

[97] JW Gooch, JW Gooch. Diffraction grating. Encyclopedic Dictionary of Polymers, 220-220(2011). http://doi.org/10.1007/978-1-4419-6247-8_3651

[98] B Gralak, B Stout. Gratings: Theory and Numeric Applications(2014).

[99] EG Loewen, E Popov. Diffraction Gratings and Applications(1997).

[100] P Lalanne, JP Hugonin. High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms. J Opt Soc Am A, 15, 1843-1851(1998).

[101] P Lalanne, D Lemercier-Lalanne. Depth dependence of the effective properties of subwavelength gratings. J Opt Soc Am A, 14, 450-459(1997).

[102] SW Tang, BC Zhu, M Jia et al. Effective-medium theory for one-dimensional gratings. Phys Rev B, 91, 174201(2015).

[103] YY Cao, YY Fu, QJ Zhou et al. Mechanism behind angularly asymmetric diffraction in phase-gradient metasurfaces. Phys Rev Appl, 12, 024006(2019).

[104] HS Lee, YT Yoon, SS Lee et al. Color filter based on a subwavelength patterned metal grating. Opt Express, 15, 15457-15463(2007).

[105] J Vörös, JJ Ramsden, G Csúcs et al. Optical grating coupler biosensors. Biomaterials, 23, 3699-3710(2002).

[106] RA Aoni, S Manjunath, BI Karawdeniya et al. Resonant dielectric metagratings for response intensified optical sensing. Adv Funct Mater, 32, 2103143(2022).

[107] XJ Li, LY Wang, G Cheng et al. Terahertz spoof surface plasmon sensing based on dielectric metagrating coupling. APL Mater, 9, 051118(2021).

[108] AV Kabashin, VG Kravets, AN Grigorenko. Label-free optical biosensing: going beyond the limits. Chem Soc Rev, 52, 6554-6585(2023).

[109] P Cheben, DX Xu, S Janz et al. Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. Opt Express, 14, 4695-4702(2006).

[110] A Barbara, P Quémerais, E Bustarret et al. Optical transmission through subwavelength metallic gratings. Phys Rev B, 66, 161403(2002).

[111] GC Cho, HT Chen, S Kraatz et al. Apertureless terahertz near-field microscopy. Semicond Sci Technol, 20, S286-S292(2005).

[112] K Taniguchi, Y Kanemitsu. Development of an apertureless near-field optical microscope for nanoscale optical imaging at low temperatures. Jpn J Appl Phys, 44, 575-577(2005).

[113] M Ishimori, Y Kanamori, M Sasaki et al. Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching. Jpn J Appl Phys, 41, 4346-4349(2002).

[114] DW Carr, JP Sullivan, TA Friedmann. Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave analysis. Opt Lett, 28, 1636-1638(2003).

[115] XY Ma, YF Li, YC Lu et al. Highly–efficient polarization–insensitive antireflection metagrating for terahertz waves. Opt Commun, 461, 125188(2020).

[116] HK Raut, VA Ganesh, AS Nair et al. Anti-reflective coatings: a critical, in-depth review. Energy Environ Sci, 4, 3779-3804(2011).

[117] HT Chen, JF Zhou, JF O’Hara et al. Antireflection coating using metamaterials and identification of its mechanism. Phys Rev Lett, 105, 073901(2010).

[118] PY Han, YW Chen, XC Zhang. Application of silicon micropyramid structures for antireflection of terahertz waves. IEEE J Sel Top Quantum Electron, 16, 338-343(2010).

[119] C Brückner, T Käsebier, B Pradarutti et al. Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range. Opt Express, 17, 3063-3077(2009).

[120] T Clausnitzer, T Kämpfe, EB Kley et al. Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency. Opt Express, 16, 5577-5584(2008).

[121] T Clausnitzer, T Kämpfe, EB Kley et al. An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings. Opt Express, 13, 10448-10456(2005).

[122] F Yang, YF Li. Evaluation and improvement of simplified modal method for designing dielectric gratings. Opt Express, 23, 31342-31356(2015).

[123] L Ding, QYS Wu, JF Song et al. Perfect broadband Terahertz antireflection by deep-subwavelength, thin, lamellar metallic gratings. Adv Opt Mater, 1, 910-914(2013).

[124] XY Ma, YF Li, YC Lu et al. Metagrating-based terahertz polarization beam splitter designed by simplified modal method. Front Phys, 8, 580781(2020).

[125] A Arbabi, E Arbabi, Y Horie et al. Planar metasurface retroreflector. Nat Photonics, 11, 415-420(2017).

[126] S Zhu, YY Cao, YY Fu et al. Switchable bifunctional metasurfaces: nearly perfect retroreflection and absorption at the terahertz regime. Opt Lett, 45, 3989-3992(2020).

[127] M Beruete, I Jáuregui‐López. Terahertz sensing based on metasurfaces. Adv Opt Mater, 8, 1900721(2020).

[128] S Banerjee, CS Amith, D Kumar et al. Ultra-thin subwavelength film sensing through the excitation of dark modes in THz metasurfaces. Opt Commun, 453, 124366(2019).

[129] XY Liu, W Chen, YJ Ma et al. Enhancing THz fingerprint detection on the planar surface of an inverted dielectric metagrating. Photonics Res, 10, 2836-2845(2022).

[130] JF Zhu, S Jiang, YN Xie et al. Enhancing terahertz molecular fingerprint detection by a dielectric metagrating. Opt Lett, 45, 2335-2338(2020).

[131] YN Xie, XY Liu, FJ Li et al. Ultra-wideband enhancement on mid-infrared fingerprint sensing for 2D materials and analytes of monolayers by a metagrating. Nanophotonics, 9, 2927-2935(2020).

[132] YN Xie, XY Liu, J Zhou et al. Enhancing trace terahertz fingerprint sensing by the lossy silicon metagrating with a gold mirror. IEEE Trans Microw Theory Tech, 1-10(2024). https://doi.org/10.1109/TMTT.2023.3314094

[133] S Rane, A Punjal, S Prabhu et al. Design, optimization, and characterization of deep sub-wavelength evanescent orders in terahertz metagratings. Opt Contin, 2, 1996-2006(2023).

[134] Y Ra’di, A Alù. Reconfigurable metagratings. ACS Photonics, 5, 1779-1785(2018).

[135] Y Ra’di, DL Sounas, A Alù. Metagratings: beyond the limits of graded metasurfaces for wave front control. Phys Rev Lett, 119, 067404(2017).

[136] YT Xie, JQ Quan, QS Shi et al. Multi-functional high-efficiency light beam splitter based on metagrating. Opt Express, 30, 4125-4132(2022).

[137] AS Feng, ZJ Yu, XK Sun. Ultranarrow-band metagrating absorbers for sensing and modulation, 1-2(2019). http://doi.org/10.1364/CLEO_AT.2019.AF2K.7

[138] G Yadav, S Sahu, R Kumar et al. Bound states in the continuum empower subwavelength gratings for refractometers in visible. Photonics, 9, 292(2022).

Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury. Physics and applications of terahertz metagratings[J]. Opto-Electronic Science, 2024, 3(11): 230049-1
Download Citation