• Laser & Optoelectronics Progress
  • Vol. 62, Issue 8, 0800004 (2025)
Yuxuan Li1, Yanping Huang2,3, Jingjiang Xu2,3, Jia Qin3..., Lin An3 and Gongpu Lan2,3,*|Show fewer author(s)
Author Affiliations
  • 1School of Mechatronic Engineering and Automation, Foshan University, Foshan 528000, Guangdong , China
  • 2Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, Guangdong , China
  • 3Guangdong Weiren Medical Technology Co., Ltd., Foshan 528000, Guangdong , China
  • show less
    DOI: 10.3788/LOP241909 Cite this Article Set citation alerts
    Yuxuan Li, Yanping Huang, Jingjiang Xu, Jia Qin, Lin An, Gongpu Lan. Advances in Linear-Wavenumber Spectral Domain Optical Coherence Tomography[J]. Laser & Optoelectronics Progress, 2025, 62(8): 0800004 Copy Citation Text show less
    References

    [1] Aumann S, Donner S, Fischer J et al. Optical coherence tomography (OCT): principle and technical realization[M]. High resolution imaging in microscopy and ophthalmology, 59-85(2019).

    [2] Wojtkowski M, Kowalczyk A, Leitgeb R et al. Full range complex spectral optical coherence tomography technique in eye imaging[J]. Optics Letters, 27, 1415-1417(2002).

    [3] Mogensen M, Thrane L, Jørgensen T M et al. OCT imaging of skin cancer and other dermatological diseases[J]. Journal of Biophotonics, 2, 442-451(2009).

    [4] Feldchtein F, Gelikonov V, Iksanov R et al. In vivo OCT imaging of hard and soft tissue of the oral cavity[J]. Optics Express, 3, 239-250(1998).

    [5] Sivak M V, Kobayashi K, Izatt J A et al. High-resolution endoscopic imaging of the GI tract using optical coherence tomography[J]. Gastrointestinal Endoscopy, 51, 474-479(2000).

    [6] Bouma B E, Tearney G J, Yabushita H et al. Evaluation of intracoronary stenting by intravascular optical coherence tomography[J]. Heart, 89, 317-320(2003).

    [7] Fercher A F. Optical coherence tomography-development, principles, applications[J]. Zeitschrift Für Medizinische Physik, 20, 251-276(2010).

    [8] Zhang J, Jung W, Nelson J et al. Full range polarization-sensitive Fourier domain optical coherence tomography[J]. Optics Express, 12, 6033-6039(2004).

    [9] Li P, Liu A P, Shi L et al. Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography[J]. Physics in Medicine and Biology, 56, 7081-7092(2011).

    [10] de Carlo T E, Romano A, Waheed N K et al. A review of optical coherence tomography angiography (OCTA)[J]. International Journal of Retina and Vitreous, 1, 5(2015).

    [11] Wang Y C, Li W J, Huang Y P et al. Advances in optical coherence elastography[J]. Laser & Optoelectronics Progress, 58, 1400003(2021).

    [12] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [13] Fercher A F, Hitzenberger C K, Kamp G et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 117, 43-48(1995).

    [14] Leitgeb R, Wojtkowski M, Kowalczyk A et al. Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography[J]. Optics Letters, 25, 820-822(2000).

    [15] Guo X, Wang X Z, Nan N et al. A depth resolution enhancement technique in Fourier domain optical coherence tomography[J]. Acta Optica Sinica, 35, 0311002(2015).

    [16] Yaqoob Z, Wu J G, Yang C. Spectral domain optical coherence tomography: a better OCT imaging strategy[J]. BioTechniques, 39, S6-S13(2005).

    [17] Lan G P, Li G Q. Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography[J]. Scientific Reports, 7, 42353(2017).

    [18] Xi J F, Huo L, Li J S et al. Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography[J]. Optics Express, 18, 9511-9517(2010).

    [19] Zavareh A T, Barajas O, Serafino M et al. A novel continuous time ternary encoding based SS-OCT calibration[C], 5-8(2016).

    [20] Meleppat R K, Matham M V, Seah L K. An efficient phase analysis-based wavenumber linearization scheme for swept source optical coherence tomography systems[J]. Laser Physics Letters, 12, 055601(2015).

    [21] Xu J J, Song S Z, Men S J et al. Long ranging swept-source optical coherence tomography-based angiography outperforms its spectral-domain counterpart in imaging human skin microcirculations[J]. Journal of Biomedical Optics, 22, 116007(2017).

    [22] Traub W A. Constant-dispersion grism spectrometer for channeled spectra[J]. Journal of the Optical Society of America A, 7, 1779-1791(1990).

    [23] Hu Z L, Rollins A M. Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer[J]. Optics Letters, 32, 3525-3527(2007).

    [24] Lee S W, Kang H, Park J H et al. Ultrahigh-resolution spectral domain optical coherence tomography based on a linear-wavenumber spectrometer[J]. Journal of the Optical Society of Korea, 19, 55-62(2015).

    [25] Wu T, Sun S S, Wang X H et al. Optimization of linear-wavenumber spectrometer for high-resolution spectral domain optical coherence tomography[J]. Optics Communications, 405, 171-176(2017).

    [26] Watanabe Y, Itagaki T. Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit[J]. Journal of Biomedical Optics, 14, 060506(2009).

    [27] Yoon C, Bauer A, Xu D et al. Absolute linear-in-k spectrometer designs enabled by freeform optics[J]. Optics Express, 27, 34593-34602(2019).

    [28] Samadi S, Dargahi J, Narayanswamy S. Design and optimization of a linear wavenumber spectrometer with cylindrical optics for line scanning optical coherence tomography[J]. Sensors, 21, 6463(2021).

    [29] Samadi S, Mohazzab M, Dargahi J et al. Design of a linear wavenumber spectrometer for line scanning optical coherence tomography with 50 mm focal length cylindrical optics[J]. Sensors, 22, 3278(2022).

    [30] Wojtkowski M, Leitgeb R, Kowalczyk A et al. In vivo human retinal imaging by Fourier domain optical coherence tomography[J]. Journal of Biomedical Optics, 7, 457-463(2002).

    [31] Dsouza R, Won J, Monroy G L et al. Economical and compact briefcase spectral-domain optical coherence tomography system for primary care and point-of-care applications[J]. Journal of Biomedical Optics, 23, 096003(2018).

    [32] Fercher A F, Drexler W, Hitzenberger C K et al. Optical coherence tomography-principles and applications[J]. Reports on Progress in Physics, 66, 239-303(2003).

    [33] Sherstnev E P, Shilyagin P A, Terpelov D A et al. An improved analytical model of a spectrometer for optical coherence tomography[J]. Photonics, 8, 534(2021).

    [34] An L, Li P, Lan G P et al. High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth[J]. Biomedical Optics Express, 4, 245-259(2013).

    [35] Hu Z L, Pan Y S, Rollins A M. Analytical model of spectrometer-based two-beam spectral interferometry[J]. Applied Optics, 46, 8499-8505(2007).

    [36] Szkulmowski M, Wojtkowski M, Bajraszewski T et al. Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source[J]. Optics Communications, 246, 569-578(2005).

    [37] Chen Y P, Zhao H, Wang Z. Investigation on spectral-domain optical coherence tomography using a tungsten halogen lamp as light source[J]. Optical Review, 16, 26-29(2009).

    [38] Tumlinson A R, Hofer B, Winkler A M et al. Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k-sampling[J]. Applied Optics, 47, 687-693(2008).

    [39] Hillmann D, Hüttmann G, Koch P. Using nonequispaced fast Fourier transformation to process optical coherence tomography signals[C], 7372_0R(2009).

    [40] Lomb N R. Least-squares frequency analysis of unequally spaced data[J]. Astrophysics and Space Science, 39, 447-462(1976).

    [41] Wu T, Ding Z H, Wang K et al. Swept source optical coherence tomography based on non-uniform discrete Fourier transform[J]. Chinese Optics of Letters, 7, 941-944(2009).

    [42] Yang Y R, Dai Y, Zhou Y H et al. Comparison of uniform resampling and nonuniform sampling direct-reconstruction methods in k-space for FD-OCT[J]. Journal of Innovative Optical Health Sciences, 16, 2350002(2023).

    [43] Gelikonov V M, Gelikonov G V, Shilyagin P A. Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography[J]. Optics and Spectroscopy, 106, 459-465(2009).

    [44] Hagen N, Tkaczyk T S. Compound prism design principles, I[J]. Applied Optics, 50, 4998-5011(2011).

    [45] Hagen N, Tkaczyk T S. Compound prism design principles, Ⅲ: linear-in-wavenumber and optical coherence tomography prisms[J]. Applied Optics, 50, 5023-5030(2011).

    [46] Hagen N, Tkaczyk T S. Compound prism design principles, Ⅱ: triplet and Janssen prisms[J]. Applied Optics, 50, 5012-5022(2011).

    [47] Bao J, Shen Q Y, Chen X H et al. Analysis and design of grism linear-wavenumber spectroscopic optical system[J]. Acta Optica Sinica, 41, 1522001(2021).

    [48] Lan G P, Xu J J, Hu Z L et al. Design of 1300 nm spectral domain optical coherence tomography angiography system for iris microvascular imaging[J]. Journal of Physics D: Applied Physics, 54, 264002(2021).

    [49] Kashani A H, Chen C L, Gahm J K et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications[J]. Progress in Retinal and Eye Research, 60, 66-100(2017).

    [50] Dong L B, Wei Y Z, Lan G P et al. High resolution imaging and quantification of the nailfold microvasculature using optical coherence tomography angiography (OCTA) and capillaroscopy: a preliminary study in healthy subjects[J]. Quantitative Imaging in Medicine and Surgery, 12, 1844-1858(2022).

    [51] Wang J Y, Nolen S, Song W Y et al. A dual-channel visible light optical coherence tomography systemenables wide-field, full-range, and shot-noise limited human retinal imaging[J]. Communications Engineering, 3, 21(2024).

    [52] Larin K V, Sampson D D. Optical coherence elastography-OCT at work in tissue biomechanics[J]. Biomedical Optics Express, 8, 1172-1202(2017).

    [53] Wang S, Larin K V. Optical coherence elastography for tissue characterization: a review[J]. Journal of Biophotonics, 8, 279-302(2015).

    [54] Schmitt J M. OCT elastography: imaging microscopic deformation and strain of tissue[J]. Optics Express, 3, 199-211(1998).

    [55] Lan G P, Aglyamov S R, Larin K V et al. In vivo human corneal shear-wave optical coherence elastography[J]. Optometry and Vision Science, 98, 58-63(2021).

    [56] Ma G Q, Cai J, Zhong R J et al. Corneal surface wave propagation associated with intraocular pressures: OCT elastography assessment in a simplified eye model[J]. Bioengineering, 10, 754(2023).

    [57] Li W J, Feng J P, Wang Y C et al. Micron-scale hysteresis measurement using dynamic optical coherence elastography[J]. Biomedical Optics Express, 13, 3021-3041(2022).

    [58] Shi Q, Feng J P, Zheng Y et al. Micro-force optical coherence elastography for in vivo corneal natural frequency measurement[J]. Acta Optica Sinica, 42, 1012005(2022).

    [59] Wang S, Aglyamov S, Karpiouk A et al. Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens[J]. Biomedical Optics Express, 4, 2769-2780(2013).

    [60] Lan G P, Larin K V, Aglyamov S et al. Characterization of natural frequencies from nanoscale tissue oscillations using dynamic optical coherence elastography[J]. Biomedical Optics Express, 11, 3301-3318(2020).

    [61] Crecea V, Oldenburg A L, Liang X et al. Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials[J]. Optics Express, 17, 23114-23122(2009).

    [62] Lan G P, Shi Q, Wang Y C et al. Spatial assessment of heterogeneous tissue natural frequency using micro-force optical coherence elastography[J]. Frontiers in Bioengineering and Biotechnology, 10, 851094(2022).

    [63] Lan G P, Gu B Y, Larin K V et al. Clinical corneal optical coherence elastography measurement precision: effect of heartbeat and respiration[J]. Translational Vision Science & Technology, 9, 3(2020).

    [64] Lan G P, Aglyamov S, Larin K V et al. In vivo human corneal natural frequency quantification using dynamic optical coherence elastography: repeatability and reproducibility[J]. Journal of Biomechanics, 121, 110427(2021).

    Yuxuan Li, Yanping Huang, Jingjiang Xu, Jia Qin, Lin An, Gongpu Lan. Advances in Linear-Wavenumber Spectral Domain Optical Coherence Tomography[J]. Laser & Optoelectronics Progress, 2025, 62(8): 0800004
    Download Citation