• Chinese Journal of Ship Research
  • Vol. 17, Issue 6, 216 (2022)
Pengfei XU1,2, Tao LYU1, Tong GE2, Hongxia CHENG1, and Min ZHAO2
Author Affiliations
  • 1College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
  • 2School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.19693/j.issn.1673-3185.02583 Cite this Article
    Pengfei XU, Tao LYU, Tong GE, Hongxia CHENG, Min ZHAO. Rolling test and dynamics simulation of spherical underwater vehicle[J]. Chinese Journal of Ship Research, 2022, 17(6): 216 Copy Citation Text show less

    Abstract

    Objectives

    In order to investigate the rolling-forward law of a spherical underwater vehicle and the influence of mass distribution on its motion, this study carries out the innovative design and analysis of its mechanical mechanism.

    Methods

    First, a dynamic model of the rolling-forward motion is established using the Newton-Euler method. The influence of mass distribution on its motion is then analyzed through the ground test and underwater hydrodynamics theory. Finally, by building a simulation environment and virtual prototype, the rolling dynamics of the vehicle underwater and on land are compared and analyzed.

    Results

    The results show that when the built-in driving unit rotates constantly, the speed of the vehicle fluctuates and the swing angle of the built-in driving unit also alters periodically. When the driving weight is increased, the period and amplitude of swing angle become smaller, and the rolling-forward motion becomes more stable.

    Conclusions

    The results of this paper can provide guidance for the further optimization of spherical underwater vehicles.

    $ {F}_{x}'=-{m}_{2}\dot{v}-{m}_{2}r\ddot{\theta }\cos\theta -{m}_{2}r{\dot{\theta }}^{2}\sin\theta -D(\dot{\phi }){f}_{\mathrm{d}}\cos\theta $(1)

    View in Article

    $ D(\dot{\phi })={\rm{sgn}}({\omega }_{\mathrm{d}}-\dot{\phi }) $(2)

    View in Article

    $ f+{F}_{x}-{F}_{\mathrm{D}}=({m}_{1}+{m}_{{\text{λ}} })\dot{v} $(3)

    View in Article

    $ (m1+mλ+m2)v˙+m2rθ¨cosθ+m2rθ˙2sinθ+FD+D(ϕ˙)fdcosθf=0 $(4)

    View in Article

    $ {F}_{y}'=-{m}_{2}g-{m}_{2}r\ddot{\theta }\sin\theta -{m}_{2}r{\dot{\theta }}^{2}\cos\theta -D(\dot{\phi }){f}_{\mathrm{d}}\sin\theta $(5)

    View in Article

    $ {F}_{y}+N+B={m}_{1}g $(6)

    View in Article

    $ (m1+mλ+m2)g+m2r(θ¨sinθ+θ˙2cosθ)+D(ϕ˙)fdsinθNB=0 $(7)

    View in Article

    $ \left\{ l=rsinθτ=Iατ=m2gl+m2r2θ¨+[D(ϕ˙)fdf]R1 \right. $(8)

    View in Article

    $ \left\{ Ishell=25(m1+λ)R15R25R13R23+(m1+λ)4(R1+R2)2Idrive=imiLi2+jmjLj2=mR12+imiri2jmjrj2+2R1cosθ(imiri2jmjrj2) \right. $(9)

    View in Article

    $ I(\theta)\text={I}_{{\rm{shell}}}+{I}_{\mathrm{d}\mathrm{r}\mathrm{i}\mathrm{v}\mathrm{e}} $(10)

    View in Article

    $ {m}_{2}gr\sin\theta +{m}_{2}{r}^{2}\ddot{\theta }+[{D(\dot{\phi })f}_{\mathrm{d}}-f]{R}_{1}=I(\theta )\frac{\text{d}\omega }{\text{d}{t}} $(11)

    View in Article

    $ \Delta m=\frac{B-({m}_{1}+{m}_{2})g}{g} $(12)

    View in Article

    $ \left\{ m2grsinθ+m2r2θ¨+D(ϕ˙)fdR2μ[m2r(θ¨sinθ+θ˙2cosθ)Δmg]R1=I(θ)ω˙(m1+mλ+m2)ω˙R1+m2rθ¨cosθ+m2rθ˙2sinθ+FDμ[m2rθ¨sinθ+m2rθ˙2cosθ+D(ϕ˙)fdsinθΔmg]=0 \right. $(13)

    View in Article

    $ \left\{ m2grsinθ+m2r2θ¨+D(ϕ˙)fdR2μ[m2r(θ¨sinθ+θ˙2cosθ)+(m1+m2)g]R1=I(θ)ω˙(m1+m2)ω˙R1+m2rθ¨cosθ+m2rθ˙2sinθμ[m2rθ¨sinθ+m2rθ˙2cosθ+D(ϕ˙)fdsinθ+(m1+m2)g]=0 \right. $(14)

    View in Article

    $ {F}_{\mathrm{D}}=31\dot{v}+47.2{v}^{2} $(15)

    View in Article

    Pengfei XU, Tao LYU, Tong GE, Hongxia CHENG, Min ZHAO. Rolling test and dynamics simulation of spherical underwater vehicle[J]. Chinese Journal of Ship Research, 2022, 17(6): 216
    Download Citation