• Laser & Optoelectronics Progress
  • Vol. 60, Issue 15, 1525001 (2023)
Aoxiang Zhang1, Bingyang Ren2, Fang Wang1,3,4,5,*, Juin. J. Liou1,3,5, and Yuhuai Liu1,3,4,5,**
Author Affiliations
  • 1National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
  • 2School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, Henan, China
  • 3Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou 450001, Henan, China
  • 4Zhengzhou Way Do Electronics Co., Ltd., Zhengzhou 450001, Henan, China
  • 5Research Institute of Industrial Technology Co., Ltd., Zhengzhou University, Zhengzhou, Henan 450001, China
  • show less
    DOI: 10.3788/LOP221886 Cite this Article Set citation alerts
    Aoxiang Zhang, Bingyang Ren, Fang Wang, Juin. J. Liou, Yuhuai Liu. Performance Enhancement of Algan-Based Deep Ultraviolet Laser Diodes with Step Superlattice Electron Blocking Layer and Wedge-Shaped Hole Blocking Layer[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1525001 Copy Citation Text show less
    References

    [1] Kneissl M, Seong T Y, Han J et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies[J]. Nature Photonics, 13, 233-244(2019).

    [2] Yoshida H, Yamashita Y, Kuwabara M et al. Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode[J]. Applied Physics Letters, 93, 241106(2008).

    [3] Li Z L, Hu X H, Xiong S S. DSA in combination with DUV lithography for sub-10 nm manufacturing[J]. Laser & Optoelectronics Progress, 59, 0922027(2022).

    [4] Hadi J, Dunowska M, Wu S Y et al. Control measures for SARS-CoV-2: a review on light-based inactivation of single-stranded RNA viruses[J]. Pathogens, 9, 737(2020).

    [5] Heilingloh C S, Aufderhorst U W, Schipper L et al. Susceptibility of SARS-CoV-2 to UV irradiation[J]. American Journal of Infection Control, 48, 1273-1275(2020).

    [6] Li X H, Detchprohm T, Kao T T et al. Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrates[J]. Applied Physics Letters, 105, 141106(2014).

    [7] Sato K, Yasue S, Ogino Y et al. Analysis of spontaneous subpeak emission from the guide layers of the ultraviolet-B laser diode structure containing composition-graded p-AlGaN cladding layers[J]. Physica Status Solidi (a), 217, 1900864(2020).

    [8] Shimokawa M, Teramura S, Tanaka S et al. Reduction of dislocation density in Al0.6Ga0.4N film grown on sapphire substrates using annealed sputtered AlN templates and its effect on UV-B laser diodes[J]. Journal of Crystal Growth, 575, 126325(2021).

    [9] Li J M, Liu Z Q, Wei T B et al. Development summary of semiconductor lighting in China[J]. Acta Optica Sinica, 41, 0116002(2021).

    [10] Yang J, Zhao D G, Liu Z S et al. A 357.9 nm GaN/AlGaN multiple quantum well ultraviolet laser diode[J]. Journal of Semiconductors, 43, 010501(2022).

    [11] Yen S H, Kuo Y K. Polarization-dependent optical characteristics of violet InGaN laser diodes[J]. Journal of Applied Physics, 103, 103115(2008).

    [12] Yu H B, Ren Z J, Memon M H et al. Cascaded deep ultraviolet light-emitting diode via tunnel junction[J]. Chinese Optics Letters, 19, 082503(2021).

    [13] Lu T P, Li S T, Liu C et al. Advantages of GaN based light-emitting diodes with a p-InGaN hole reservoir layer[J]. Applied Physics Letters, 100, 141106(2012).

    [14] Yang X, Sun H Q, Fan X C et al. Optimization on the luminous efficiency in AlGaN-based ultraviolet light-emitting diodes by amendment of a superlattice hole reservoir layer[J]. Superlattices and Microstructures, 101, 293-298(2017).

    [15] Gupta H S, Ahmad S, Kattayat S et al. Improvement in efficiency and luminous power of AlGaN-based D-UV LEDs by using partially graded quantum barriers[J]. Superlattices and Microstructures, 142, 106543(2020).

    [16] Shi H Z, Gu H M, Li J H et al. Performance improvements of AlGaN-based deep-ultraviolet light-emitting diodes with specifically designed irregular sawtooth hole and electron blocking layers[J]. Optics Communications, 441, 149-154(2019).

    [17] Zhang Z H, Zhang Y H, Bi W G et al. On the hole accelerator for III-nitride light-emitting diodes[J]. Applied Physics Letters, 108, 151105(2016).

    [18] Kwon M R, Park T H, Lee T H et al. Improving the performance of AlGaN-based deep-ultraviolet light-emitting diodes using electron blocking layer with a heart-shaped graded Al composition[J]. Superlattices and Microstructures, 116, 215-220(2018).

    [19] Usman M, Munsif M, Anwar A R. Wedge-shaped electron blocking layer to improve hole transport and efficiency in green light-emitting diodes[J]. Optics Communications, 464, 125493(2020).

    [20] Xing Z Q, Zhou Y J, Chen X et al. Increased radiative recombination of AlGaN-based deep ultraviolet laser diodes with convex quantum wells[J]. Optoelectronics Letters, 16, 87-91(2020).

    [21] Sato K, Yasue S, Yamada K et al. Room-temperature operation of AlGaN ultraviolet-B laser diode at 298 nm on lattice-relaxed Al0.6Ga0.4N/AlN/sapphire[J]. Applied Physics Express, 13, 031004(2020).

    [22] Zhang Z Y, Kushimoto M, Sakai T et al. Design and characterization of a low-optical-loss UV-C laser diode[J]. Japanese Journal of Applied Physics, 59, 094001(2020).

    [23] Xing Z Q, Zhou Y J, Liu Y H et al. Reduction of electron leakage of AlGaN-based deep ultraviolet laser diodes using an inverse-trapezoidal electron blocking layer[J]. Chinese Physics Letters, 37, 027302(2020).

    [24] Sharif M N, Khan M A, Wali Q et al. Performance enhancement of AlGaN deep-ultraviolet laser diode using compositional Al-grading of Si-doped layers[J]. Optics & Laser Technology, 152, 108156(2022).

    [25] Yang Q, Han C H, Mi X N et al. Characteristics of aerosol vertical distribution in Yuncheng area based on CALIOP[J]. Laser & Optoelectronics Progress, 59, 0228004(2022).

    [26] Dong K X, Chen D J, Liu B et al. Characteristics of polarization-doped N-face III-nitride light-emitting diodes[J]. Applied Physics Letters, 100, 073507(2012).

    [27] Kuo Y K, Chen F M, Chang J Y et al. Design and optimization of electron-blocking layer in deep ultraviolet light-emitting diodes[J]. IEEE Journal of Quantum Electronics, 56, 3300206(2020).

    [28] Zhang M, Li Y, Chen S C et al. Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells[J]. Superlattices and Microstructures, 75, 63-71(2014).

    [29] Liu E K, Zhu B S, Luo J S[M]. Physics of semiconductors, 298-299(2017).

    [30] Li G H. Resonant tunneling devices and their circuit applications[J]. Physics, 30, 436-440(2001).

    [31] Shih Y H, Chang J Y, Sheu J K et al. Design of hole-blocking and electron-blocking layers in AlxGa1-xN-based UV light-emitting diodes[J]. IEEE Transactions on Electron Devices, 63, 1141-1147(2016).

    [32] Zhang Y H, Lv Q J, Zheng C D et al. Recombination pathways and hole leakage behavior in InGaN/GaN multiple quantum wells with V-shaped pits[J]. Superlattices and Microstructures, 136, 106284(2019).

    [33] Chen P, Feng M X, Jiang D S et al. Improvement of characteristics of InGaN-based laser diodes with undoped InGaN upper waveguide layer[J]. Journal of Applied Physics, 112, 113105(2012).

    [34] Singha C, Sen S, Das A et al. GaN/AlN multiple quantum wells grown by molecular beam epitaxy: effect of growth kinetics on radiative recombination efficiency[J]. Thin Solid Films, 709, 138216(2020).

    [35] Crump P, Erbert G, Wenzel H et al. Efficient high-power laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1501211(2013).

    [36] Zhang Y, Yang C A, Shang J M et al. Research progress of semiconductor interband cascade lasers[J]. Acta Optica Sinica, 41, 0114004(2021).

    [37] Tanaka S, Ogino Y, Yamada K et al. AlGaN-based UV-B laser diode with a high optical confinement factor[J]. Applied Physics Letters, 118, 163504(2021).

    [38] Zhou B K, Gao Y Z, Chen T R[M]. Principle of laser, 277-278(2014).

    [39] Huang H H, Chu S Y, Kao P C et al. Enhancement of hole-injection and power efficiency of organic light emitting devices using an ultra-thin ZnO buffer layer[J]. Journal of Alloys and Compounds, 479, 520-524(2009).

    [40] Chang Y D, Wang Z F, Zhang X Y et al. Waveguide optimization and efficiency characteristic analysis of 808 nm laser diodes[J]. Chinese Journal of Luminescence, 42, 1040-1048(2021).

    [41] Hai X, Rashid R T, Sadaf S M et al. Effect of low hole mobility on the efficiency droop of AlGaN nanowire deep ultraviolet light emitting diodes[J]. Applied Physics Letters, 114, 101104(2019).

    [42] Li L P, Zhang Y H, Xu S et al. On the hole injection for III-nitride based deep ultraviolet light-emitting diodes[J]. Materials, 10, 1221(2017).

    Aoxiang Zhang, Bingyang Ren, Fang Wang, Juin. J. Liou, Yuhuai Liu. Performance Enhancement of Algan-Based Deep Ultraviolet Laser Diodes with Step Superlattice Electron Blocking Layer and Wedge-Shaped Hole Blocking Layer[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1525001
    Download Citation