• Laser & Optoelectronics Progress
  • Vol. 62, Issue 8, 0815012 (2025)
Fanna Meng1,*, ZouYongjia1, Yang Cao1, Jin Lü2, and Hongfei Yu1
Author Affiliations
  • 1School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun 113000, Liaoning , China
  • 2Neusoft Reach Automotive Technology (Shenyang) Co., Ltd., Shenyang 110179, Liaoning , China
  • show less
    DOI: 10.3788/LOP241894 Cite this Article Set citation alerts
    Fanna Meng, ZouYongjia, Yang Cao, Jin Lü, Hongfei Yu. Stereo Matching Algorithm Based on Adaptive Spatial Convolution[J]. Laser & Optoelectronics Progress, 2025, 62(8): 0815012 Copy Citation Text show less
    References

    [1] Chen Y, Yang L L, Wang Z P. Literature survey on stereo vision matching algorithms[J]. Journal of Graphics, 41, 702-708(2020).

    [2] Wu S D, Shi C J, He W T. Optimization design of binocular vision image measurement and calibration method based on opencv[J]. Technology Innovation and Application, 7, 66(2017).

    [3] Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 47, 7-42(2002).

    [4] Zhang K, Lu J B, Lafruit G. Cross-based local stereo matching using orthogonal integral images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 19, 1073-1079(2009).

    [5] Hirschmuller H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 328-341(2008).

    [6] Zhou X Z, Wen G J, Wang R S. Fast stereo matching using adaptive window[J]. Chinese Journal of Computers, 29, 473-479(2006).

    [7] Žbontar J, LeCun Y. Computing the stereo matching cost with a convolutional neural network[C], 1592-1599(2015).

    [8] Kendall A, Martirosyan H, Dasgupta S et al. End-to-end learning of geometry and context for deep stereo regression[C], 66-75(2017).

    [9] Chang J R, Chen Y S. Pyramid stereo matching network[C], 5410-5418(2018).

    [10] Guo X Y, Yang K, Yang W K et al. Group-wise correlation stereo network[C], 3268-3277(2019).

    [11] Wang Y F, Wang H W, Liu Y et al. Real-time stereo matching algorithm with hierarchical refinement[J]. Acta Optica Sinica, 40, 0915002(2020).

    [12] Lipson L, Teed Z, Deng J. RAFT-stereo: multilevel recurrent field transforms for stereo matching[C], 218-227(2021).

    [13] Xu G W, Wang X Q, Ding X H et al. Iterative geometry encoding volume for stereo matching[C], 21919-21928(2023).

    [14] Wang X Q, Xu G W, Jia H et al. Selective-stereo: adaptive frequency information selection for stereo matching[EB/OL]. https://arxiv.org/abs/2403.00486v1

    [15] Chen Y P, Dai X Y, Liu M C et al. Dynamic convolution: attention over convolution kernels[C], 11027-11036(2020).

    [16] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. Computer vision-ECCV 2018, 11211, 3-19(2018).

    [17] Du H Z, Zhang T, Sun Y B et al. Stereo matching method based on gated recurrent unit networks[J]. Laser & Optoelectronics Progress, 58, 1415001(2021).

    [18] Lei T, Zhang Y, Artzi Y. Training RNNs as fast as CNNs[EB/OL]. https://arxiv.org/abs/1709.02755v1

    [19] Mayer N, Ilg E, Häusser P et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C], 4040-4048(2016).

    [20] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C], 3354-3361(2012).

    [21] Menze M, Geiger A. Object scene flow for autonomous vehicles[C], 3061-3070(2015).

    [22] Schöps T, Schönberger J L, Galliani S et al. A multi-view stereo benchmark with high-resolution images and multi-camera videos[C], 2538-2547(2017).

    [23] Scharstein D, Hirschmüller H, Kitajima Y et al. High-resolution stereo datasets with subpixel-accurate ground truth[M]. Pattern recognition, 8753, 31-42(2014).

    [24] Loshchilov I, Hutter F. Decoupled weight decay regularization[EB/OL]. https://arxiv.org/abs/1711.05101v3

    [25] Li J K, Wang P S, Xiong P F et al. Practical stereo matching via cascaded recurrent network with adaptive correlation[C], 16242-16251(2022).

    [26] Li K H, Wang L G, Zhang Y et al. LoS: local structure-guided stereo matching[C], 19746-19756(2024).

    [27] Weinzaepfel P, Lucas T, Leroy V et al. CroCo v2: improved cross-view completion pre-training for stereo matching and optical flow[C], 17923-17934(2023).

    [28] Zhou J L, Huang W Q, Liao Q M et al. Multi-dimensional attention on cost volume for stereo matching[C](2024).

    [29] Qin L M, Yu B, Cui H Y et al. Disparity estimation method based on the improved ACV model[J]. Laser & Optoelectronics Progress, 61, 2415003(2024).

    [30] Zhao T, Ding M Y, Zhan W et al. Depth-aware volume attention for texture-less stereo matching[EB/OL]. https://arxiv.org/abs/2402.08931v2

    [31] Yuan T M, Hu J C, Ou S J et al. Hourglass cascaded recurrent stereo matching network[J]. Image and Vision Computing, 147, 105074(2024).

    [32] Zhang F H, Prisacariu V, Yang R G et al. GA-net: guided aggregation net for end-to-end stereo matching[C], 185-194(2019).

    [33] Zhao H L, Zhou H Z, Zhang Y J et al. High-frequency stereo matching network[C], 1327-1336(2023).

    [34] Xu G W, Wang X Q, Zhang Z X et al. IGEV++: iterative multi-range geometry encoding volumes for stereo matching[EB/OL]. https://arxiv.org/abs/2409.00638v1