• Acta Optica Sinica
  • Vol. 45, Issue 6, 0601007 (2025)
Saifen Yu1,2, Zhen Zhang1,2,*, and Haiyun Xia1,2
Author Affiliations
  • 1School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu , China
  • 2National Center of Carbon Metrology (Fujian), Nanping 353011, Fujian , China
  • show less
    DOI: 10.3788/AOS241372 Cite this Article Set citation alerts
    Saifen Yu, Zhen Zhang, Haiyun Xia. Sensitivity Analysis of Simultaneous Remote Sensing of Carbon Dioxide and Water Vapor Isotope Using LiDAR[J]. Acta Optica Sinica, 2025, 45(6): 0601007 Copy Citation Text show less
    References

    [1] Wu P, Shan C G, Wang W et al. Observation of atmospheric water vapor and its stable isotopes at the seaside based on Fourier transform infrared spectroscopy[J]. Chinese Journal of Lasers, 51, 0511005(2024).

    [2] Yue B, Yu S F, Dong J J et al. Measurement methods and progress of greenhouse gas flux[J]. Acta Optica Sinica, 43, 1899906(2023).

    [3] Liu W Q. Opportunities and challenges for development of atmospheric environmental optics monitoring technique under “double carbon” goal[J]. Acta Optica Sinica, 42, 0600001(2022).

    [4] Zhao X L, Yuan R Q. Measurement methods and progress of greenhouse gas flux[J]. Geomatics Science and Technology, 10, 13(2022).

    [5] Yang X Y, Wang Z T, Pan G et al. Advances in atmospheric observation techniques for greenhouse gases by satellite remote sensing[J]. Journal of Atmospheric and Environmental Optics, 17, 581-597(2022).

    [6] Yu S F, Guo K X, Li S H et al. Three-dimensional detection of CO2 and wind using a 1.57 µm coherent differential absorption lidar[J]. Optics Express, 32, 21134-21148(2024).

    [7] Bösenberg J. Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology[J]. Applied Optics, 37, 3845-3860(1998).

    [8] Ismail S, Browell E V. Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis[J]. Applied Optics, 28, 3603-3615(1989).

    [9] Fan C C, Chen C, Liu J Q et al. Preliminary analysis of global column-averaged CO2 concentration data from the spaceborne aerosol and carbon dioxide detection lidar onboard AEMS[J]. Optics Express, 32, 21870-21886(2024).

    [10] Huang Q, Wang Q, Wang K T et al. Indoor CO2 online monitoring based on open-path tunable diode laser absorption spectroscopy[J]. Laser & Optoelectronics Progress, 61, 0530004(2024).

    [11] Chen W B, Liu J Q, Zhu X P et al. Spaceborne lidar remote sensing progress and developments (invited)[J]. Chinese Journal of Lasers, 51, 1101011(2024).

    [12] Han G, Gong W, Lin H et al. Study on influences of atmospheric factors on vertical CO2 profile retrieving from ground-based DIAL at 1.6 μm[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 3221-3234(2015).

    [13] Barria J B, Mammez D, Cadiou E et al. Multispecies high-energy emitter for CO2, CH4, and H2O monitoring in the 2 μm range[J]. Optics Letters, 39, 6719-6722(2014).

    [14] Wagner G A, Plusquellic D F. Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6 μm[J]. Applied Optics, 55, 6292-6310(2016).

    [15] Wagner G A, Plusquellic D F. Multi-frequency differential absorption LIDAR system for remote sensing of CO2 and H2O near 1.6 µm[J]. Optics Express, 26, 19420-19434(2018).

    [16] Abshire J B, Ramanathan A K, Riris H et al. Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector[J]. Atmospheric Measurement Techniques, 11, 2001-2025(2018).

    [17] Sun X L, Abshire J B, Ramanathan A et al. Retrieval algorithm for the column CO2 mixing ratio from pulsed multi-wavelength lidar measurements[J]. Atmospheric Measurement Techniques, 14, 3909-3922(2021).

    [18] Yu S F, Zhang Z, Li M Y et al. Multi-frequency differential absorption lidar incorporating a comb-referenced scanning laser for gas spectrum analysis[J]. Optics Express, 29, 12984-12995(2021).

    [19] Yu S F, Zhang Z, Xia H Y et al. Photon-counting distributed free-space spectroscopy[J]. Light: Science & Applications, 10, 212(2021).

    [20] Hamperl J, Capitaine C, Dherbecourt J B et al. Differential absorption lidar for water vapor isotopologues in the 1.98 µm spectral region: sensitivity analysis with respect to regional atmospheric variability[J]. Atmospheric Measurement Techniques, 14, 6675-6693(2021).

    [21] Hamperl J, Dherbecourt J B, Raybaut M et al. Range-resolved detection of boundary layer stable water vapor isotopologues using a ground-based 1.98 µm differential absorption LIDAR[J]. Optics Express, 30, 47199-47215(2022).

    [22] Ambrico P F, Amodeo A, Di Girolamo P et al. Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region[J]. Applied Optics, 39, 6847-6865(2000).

    [23] Schreier F. The Voigt and complex error function: a comparison of computational methods[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 48, 743-762(1992).

    [24] Liou K N[M]. An introduction to atmospheric radiation(2002).

    [25] Han G, Xu H, Gong W et al. Simulations of a multi-wavelength differential absorption lidar method for CO2 measurement[J]. Applied Optics, 56, 8532-8540(2017).

    [26] Kiemle C, Quatrevalet M, Ehret G et al. Sensitivity studies for a space-based methane lidar mission[J]. Atmospheric Measurement Techniques, 4, 2195-2211(2011).

    [27] Ehret G, Kiemle C, Wirth M et al. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis[J]. Applied Physics B, 90, 593-608(2008).

    [28] Berk A, Hawes F. Validation of MODTRAN®6 and its line-by-line algorithm[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 203, 542-556(2017).

    [29] Gordon I E, Rothman L S, Hargreaves R J et al. The HITRAN2020 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 277, 107949(2022).

    Saifen Yu, Zhen Zhang, Haiyun Xia. Sensitivity Analysis of Simultaneous Remote Sensing of Carbon Dioxide and Water Vapor Isotope Using LiDAR[J]. Acta Optica Sinica, 2025, 45(6): 0601007
    Download Citation