• Opto-Electronic Advances
  • Vol. 7, Issue 12, 240122 (2024)
Yongjae Jo1,†, Hyemi Park1,2,†, Hyeyoung Yoon2,3,†, and Inki Kim1,2,*
Author Affiliations
  • 1Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
  • 2Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
  • 3Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
  • show less
    DOI: 10.29026/oea.2024.240122 Cite this Article
    Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim. Advanced biological imaging techniques based on metasurfaces[J]. Opto-Electronic Advances, 2024, 7(12): 240122 Copy Citation Text show less
    References

    [1] I Avrutsky, K Chaganti, I Salakhutdinov et al. Concept of a miniature optical spectrometer using integrated optical and micro-optical components. Appl Opt, 45, 7811-7817(2006).

    [2] M Khorasaninejad, F Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017).

    [3] M Khorasaninejad, WT Chen, RC Devlin et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [4] XJ Ni, S Ishii, AV Kildishev et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci Appl, 2, e72(2013).

    [5] I Kim, J Jang, G Kim et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat Commun, 12, 3614(2021).

    [6] I Kim, WS Kim, K Kim et al. Holographic metasurface gas sensors for instantaneous visual alarms. Sci Adv, 7, eabe9943(2021).

    [7] R Paniagua-Dominguez, YF Yu, E Khaidarov et al. A metalens with a near-unity numerical aperture. Nano Lett, 18, 2124-2132(2018).

    [8] HW Liang, QL Lin, XS Xie et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett, 18, 4460-4466(2018).

    [9] H Chung, OD Miller. High-NA achromatic metalenses by inverse design. Opt Express, 28, 6945-6965(2020).

    [10] SY Zhang, CL Wong, SW Zeng et al. Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective. Nanophotonics, 10, 259-293(2021).

    [11] DD Nguyen, S Lee, I Kim. Recent advances in metaphotonic biosensors. Biosensors, 13, 631(2023).

    [12] WT Chen, AY Zhu, V Sanjeev et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol, 13, 220-226(2018).

    [13] RJ Lin, VC Su, SM Wang et al. Achromatic metalens array for full-colour light-field imaging. Nat Nanotechnol, 14, 227-231(2019).

    [14] J Rho, ZL Ye, Y Xiong et al. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat Commun, 1, 143(2010).

    [15] D Lee, YD Kim, M Kim et al. Realization of wafer-scale hyperlens device for sub-diffractional biomolecular imaging. ACS Photonics, 5, 2549-2554(2018).

    [16] YU Lee, JX Zhao, Q Ma et al. Metamaterial assisted illumination nanoscopy via random super-resolution speckles. Nat Commun, 12, 1559(2021).

    [17] S Masuda, T Kuboki, S Kidoaki et al. High axial and lateral resolutions on self-assembled gold nanoparticle metasurfaces for live-cell imaging. ACS Appl Nano Mater, 3, 11135-11142(2020).

    [18] PC Huo, C Zhang, WQ Zhu et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett, 20, 2791-2798(2020).

    [19] XW Wang, H Wang, JL Wang et al. Single-shot isotropic differential interference contrast microscopy. Nat Commun, 14, 2063(2023).

    [20] FH Shi, J Wen, DY Lei. High-efficiency, large-area lattice light-sheet generation by dielectric metasurfaces. Nanophotonics, 9, 4043-4051(2020).

    [21] Y Luo, ML Tseng, S Vyas et al. Meta-lens light-sheet fluorescence microscopy for in vivo imaging. Nanophotonics, 11, 1949-1959(2022).

    [22] CH Wang, QM Chen, HL Liu et al. Miniature two-photon microscopic imaging using dielectric metalens. Nano Lett, 23, 8256-8263(2023).

    [23] A Barulin, H Park, B Park et al. Dual-wavelength UV-visible metalens for multispectral photoacoustic microscopy: a simulation study. Photoacoustics, 32, 100545(2023).

    [24] W Song, CK Guo, YT Zhao et al. Ultraviolet metasurface-assisted photoacoustic microscopy with great enhancement in DOF for fast histology imaging. Photoacoustics, 32, 100525(2023).

    [25] H Pahlevaninezhad, M Khorasaninejad, YW Huang et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat Photonics, 12, 540-547(2018).

    [26] R Schmidt, A Slobozhanyuk, P Belov et al. Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging. Sci Rep, 7, 1678(2017).

    [27] E Lassalle, TWW Mass, D Eschimese et al. Imaging properties of large field-of-view quadratic metalenses and their applications to fingerprint detection. ACS Photonics, 8, 1457-1468(2021).

    [28] WC Hsu, CH Chang, YH Hong et al. Metasurface- and PCSEL-based structured light for monocular depth perception and facial recognition. Nano Lett, 24, 1808-1815(2024).

    [29] NF Yu, P Genevet, MA Kats et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [30] J Hu, S Bandyopadhyay, YH Liu et al. A review on metasurface: from principle to smart metadevices. Front Phys, 8, 586087(2021).

    [31] NF Yu, F Capasso. Flat optics with designer metasurfaces. Nat Mater, 13, 139-150(2014).

    [32] M Khorasaninejad, AY Zhu, C Roques-Carmes et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett, 16, 7229-7234(2016).

    [33] M Khorasaninejad, WT Chen, J Oh et al. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett, 16, 3732-3737(2016).

    [34] JPB Mueller, NA Rubin, RC Devlin et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett, 118, 113901(2017).

    [35] LQ Cong, NN Xu, WL Zhang et al. Polarization control in terahertz metasurfaces with the lowest order rotational symmetry. Adv Opt Mater, 3, 1176-1183(2015).

    [36] XZ Chen, LL Huang, H Mühlenbernd et al. Dual-polarity plasmonic metalens for visible light. Nat Commun, 3, 1198(2012).

    [37] A Arbabi, Y Horie, M Bagheri et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol, 10, 937-943(2015).

    [38] SC Jiang, X Xiong, YS Hu et al. High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection. Phys Rev B, 91, 125421(2015).

    [39] LL Huang, XZ Chen, H Mühlenbernd et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett, 12, 5750-5755(2012).

    [40] SW Moon, C Lee, Y Yang et al. Tutorial on metalenses for advanced flat optics: design, fabrication, and critical considerations. J Appl Phys, 131, 091101(2022).

    [41] WJ Luo, SL Sun, HX Xu et al. Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency. Phys Rev Appl, 7, 044033(2017).

    [42] X Fu, HW Liang, JT Li. Metalenses: from design principles to functional applications. Front Optoelectron, 14, 170-186(2021).

    [43] J Kim, YM Li, MN Miskiewicz et al. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica, 2, 958-964(2015).

    [44] DD Wen, FY Yue, GX Li et al. Helicity multiplexed broadband metasurface holograms. Nat Commun, 6, 8241(2015).

    [45] WT Chen, M Khorasaninejad, AY Zhu et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light Sci Appl, 6, e16259(2017).

    [46] R Xu, P Chen, J Tang et al. Perfect higher-order Poincaré sphere beams from digitalized geometric phases. Phys Rev Appl, 10, 034061(2018).

    [47] D Jeon, K Shin, SW Moon et al. Recent advancements of metalenses for functional imaging. Nano Converg, 10, 24(2023).

    [48] MK Liu, DY Choi. Extreme Huygens’ metasurfaces based on quasi-bound states in the continuum. Nano Lett, 18, 8062-8069(2018).

    [49] G Kim, Y Kim, J Yun et al. Metasurface-driven full-space structured light for three-dimensional imaging. Nat Commun, 13, 5920(2022).

    [50] YJ Wang, QM Chen, WH Yang et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat Commun, 12, 5560(2021).

    [51] WT Chen, AY Zhu, J Sisler et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat Commun, 10, 355(2019).

    [52] JT Heiden, MS Jang. Design framework for polarization-insensitive multifunctional achromatic metalenses. Nanophotonics, 11, 583-591(2022).

    [53] M Faraji-Dana, E Arbabi, A Arbabi et al. Compact folded metasurface spectrometer. Nat Commun, 9, 4196(2018).

    [54] GY Cai, YH Li, Y Zhang et al. Compact angle-resolved metasurface spectrometer. Nat Mater, 23, 71-78(2024).

    [55] RX Wang, MA Ansari, H Ahmed et al. Compact multi-foci metalens spectrometer. Light Sci Appl, 12, 103(2023).

    [56] M Faraji-Dana, E Arbabi, A Arbabi et al. Folded planar metasurface spectrometer, 1-2(2018).

    [57] WQ Liu, L Deng, SF Li et al. High transmittance and broadband group delay metasurface element in Ka band, 669-671(2021). http://doi.org/10.1109/ICEICT53123.2021.9531170

    [58] F Miyamaru, H Morita, Y Nishiyama et al. Ultrafast optical control of group delay of narrow-band terahertz waves. Sci Rep, 4, 4346(2014).

    [59] L Jiang, XZ Li, QX Wu et al. Neural network enabled metasurface design for phase manipulation. Opt Express, 29, 2521-2528(2021).

    [60] MZ Chen, Q Cheng, F Xia et al. Metasurface‐based spatial phasers for analogue signal processing. Adv Opt Mater, 8, 2000128(2020).

    [61] O Tsilipakos, T Koschny, CM Soukoulis. Antimatched electromagnetic metasurfaces for broadband arbitrary phase manipulation in reflection. ACS Photonics, 5, 1101-1107(2018).

    [62] MK Trubetskov, Pechmann M Von, IB Angelov et al. Measurements of the group delay and the group delay dispersion with resonance scanning interferometer. Opt Express, 21, 6658-6669(2013).

    [63] NT Song, NX Xu, DZ Shan et al. Broadband achromatic metasurfaces for longwave infrared applications. Nanomaterials, 11, 2760(2021).

    [64] YL He, BX Song, J Tang. Optical metalenses: fundamentals, dispersion manipulation, and applications. Front Optoelectron, 15, 24(2022).

    [65] Y Pan, S Neuss, A Leifert et al. Size‐dependent cytotoxicity of gold nanoparticles. Small, 3, 1941-1949(2007).

    [66] MR Gonçalves, H Minassian, A Melikyan. Plasmonic resonators: fundamental properties and applications. J Phys D Appl Phys, 53, 443002(2020).

    [67] Q Xu, XQ Zhang, YH Xu et al. Plasmonic metalens based on coupled resonators for focusing of surface plasmons. Sci Rep, 6, 37861(2016).

    [68] M Autore, R Hillenbrand. What momentum mismatch. Nat Nanotechnol, 14, 308-309(2019).

    [69] K Kim, Y Oh, K Ma et al. Plasmon-enhanced total-internal-reflection fluorescence by momentum-mismatched surface nanostructures. Opt Lett, 34, 3905-3907(2009).

    [70] LS Qin, X Chen, LL Zhang et al. Design, fabrication and testing of gain SPR sensor chip. J Phys Conf Ser, 1209, 012006(2019).

    [71] E Petryayeva, UJ Krull. Localized surface plasmon resonance: nanostructures, bioassays and biosensing—A review. Anal Chim Acta, 706, 8-24(2011).

    [72] G Palermo, A Lininger, A Guglielmelli et al. All-optical tunability of metalenses permeated with liquid crystals. ACS nano, 16, 16539-16548(2022).

    [73] S Park, JW Hahn, JY Lee. Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation. Opt Express, 20, 4856-4870(2012).

    [74] C Damgaard-Carstensen, F Ding, C Meng et al. Demonstration of> 2π reflection phase range in optical metasurfaces based on detuned gap-surface plasmon resonators. Sci Rep, 10, 19031(2020).

    [75] K Yao, YM Liu. Plasmonic metamaterials. Nanotechnol Rev, 3, 177-210(2014).

    [76] XC Tong. Plasmonic metamaterials and metasurfaces. Functional Metamaterials and Metadevices, 129-153(2018).

    [77] P Christopher, HL Xin, S Linic. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat Chem, 3, 467-472(2011).

    [78] ES Barnard, JS White, A Chandran et al. Spectral properties of plasmonic resonator antennas. Opt Express, 16, 16529-16537(2008).

    [79] SL Sun, Q He, JM Hao et al. Electromagnetic metasurfaces: physics and applications. Adv Opt Photonics, 11, 380-479(2019).

    [80] A Pors, O Albrektsen, IP Radko et al. Gap plasmon-based metasurfaces for total control of reflected light. Sci Rep, 3, 2155(2013).

    [81] F Ding, YQ Yang, RA Deshpande et al. A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics, 7, 1129-1156(2018).

    [82] A Pors, SI Bozhevolnyi. Plasmonic metasurfaces for efficient phase control in reflection. Opt Express, 21, 27438-27451(2013).

    [83] A Pors, MG Nielsen, RL Eriksen et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett, 13, 829-834(2013).

    [84] S Boroviks, RA Deshpande, NA Mortensen et al. Multifunctional metamirror: polarization splitting and focusing. ACS Photonics, 5, 1648-1653(2018).

    [85] E Cortés, FJ Wendisch, L Sortino et al. Optical metasurfaces for energy conversion. Chem Rev, 122, 15082-15176(2022).

    [86] S Linic, P Christopher, DB Ingram. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater, 10, 911-921(2011).

    [87] P Gutruf, CJ Zou, W Withayachumnankul et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies. Acs Nano, 10, 133-141(2016).

    [88] S Campione, LI Basilio, LK Warne et al. Tailoring dielectric resonator geometries for directional scattering and Huygens’ metasurfaces. Opt Express, 23, 2293-2307(2015).

    [89] M Decker, I Staude, M Falkner et al. High‐efficiency dielectric Huygens’ surfaces. Adv Opt Mater, 3, 813-820(2015).

    [90] SA Maier. Plasmonics: Fundamentals and Applications(2007).

    [91] K Koshelev, Y Kivshar. Dielectric resonant metaphotonics. ACS Photonics, 8, 102-112(2021).

    [92] DM Lin, PY Fan, E Hasman et al. Dielectric gradient metasurface optical elements. Science, 345, 298-302(2014).

    [93] RC Devlin, M Khorasaninejad, WT Chen et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc Natl Acad Sci USA, 113, 10473-10478(2016).

    [94] SH Zhou, ZX Shen, XA Li et al. Liquid crystal integrated metalens with dynamic focusing property. Opt Lett, 45, 4324-4327(2020).

    [95] MY Pan, YF Fu, MJ Zheng et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light Sci Appl, 11, 195(2022).

    [96] M Kerker, DS Wang, CL Giles. Electromagnetic scattering by magnetic spheres. J Opt Soc Am, 73, 765-767(1983).

    [97] MM Bukharin, VY Pecherkin, AK Ospanova et al. Transverse Kerker effect in all-dielectric spheroidal particles. Sci Rep, 12, 7997(2022).

    [98] W Liu, YS Kivshar. Generalized Kerker effects in nanophotonics and meta-optics [Invited]. Opt Express, 26, 13085-13105(2018).

    [99] WW Liu, ZC Li, H Cheng et al. Dielectric resonance-based optical metasurfaces: from fundamentals to applications. iScience, 23, 101868(2020).

    [100] P Genevet, F Capasso, F Aieta et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 4, 139-152(2017).

    [101] S Long, M McAllister, L Shen. The resonant cylindrical dielectric cavity antenna. IEEE Trans Antennas Propag, 31, 406-412(1983).

    [102] SW Wang, JJ Lai, T Wu et al. Wide-band achromatic metalens for visible light by dispersion compensation method. J Phys D Appl Phys, 50, 455101(2017).

    [103] S Rytov. Electromagnetic properties of a finely stratified medium. Sov Phys JEPT, 2, 466-475(1956).

    [104] S Vo, D Fattal, WV Sorin et al. Sub-wavelength grating lenses with a twist. IEEE Photonics Technol Lett, 26, 1375-1378(2014).

    [105] A Arbabi, Y Horie, AJ Ball et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun, 6, 7069(2015).

    [106] DA Powell. Interference between the modes of an all-dielectric meta-atom. Phys Rev Appl, 7, 034006(2017).

    [107] Q Wang, ETF Rogers, B Gholipour et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photonics, 10, 60-65(2016).

    [108] YF Zhang, C Fowler, JH Liang et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat Nanotechnol, 16, 661-666(2021).

    [109] S Abdollahramezani, O Hemmatyar, M Taghinejad et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nat Commun, 13, 1696(2022).

    [110] Y Wang, DJ Cui, Y Wang et al. Electrically and thermally tunable multifunctional terahertz metasurface array. Phys Rev A, 105, 033520(2022).

    [111] ZW Shao, X Cao, HJ Luo et al. Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials. NPG Asia Mater, 10, 581-605(2018).

    [112] MY Shalaginov, SS An, YF Zhang et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat Commun, 12, 1225(2021).

    [113] WH Zhang, XQ Wu, L Li et al. Fabrication of a VO2-based tunable metasurface by electric-field scanning probe lithography with precise depth control. ACS Appl Mater Interfaces, 15, 13517-13525(2023).

    [114] MRM Hashemi, SH Yang, TY Wang et al. Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci Rep, 6, 35439(2016).

    [115] J King, CH Wan, TJ Park et al. Electrically tunable VO2–metal metasurface for mid-infrared switching, limiting and nonlinear isolation. Nat Photonics, 18, 74-80(2024).

    [116] CH Wan, Z Zhang, D Woolf et al. On the optical properties of thin‐film vanadium dioxide from the visible to the far infrared. Ann Phys, 531, 1900188(2019).

    [117] F Chu, LL Tian, R Li et al. Adaptive nematic liquid crystal lens array with resistive layer. Liq Cryst, 47, 563-571(2020).

    [118] DH Kang, HS Heo, YH Yang et al. Liquid crystal-integrated metasurfaces for an active photonic platform. Opto-Electron Adv, 7, 230216(2024).

    [119] X Chang, M Pivnenko, P Shrestha et al. Electrically tuned active metasurface towards metasurface-integrated liquid crystal on silicon (meta-LCoS) devices. Opt Express, 31, 5378-5387(2023).

    [120] YY Ji, F Fan, X Zhang et al. Active terahertz anisotropy and dispersion engineering based on dual-frequency liquid crystal and dielectric metasurface. J Lightwave Technol, 38, 4030-4036(2020).

    [121] D Rocco, L Carletti, R Caputo et al. Switching the second harmonic generation by a dielectric metasurface via tunable liquid crystal. Opt Express, 28, 12037-12046(2020).

    [122] T Badloe, Y Kim, J Kim et al. Bright-field and edge-enhanced imaging using an electrically tunable dual-mode metalens. ACS Nano, 17, 14678-14685(2023).

    [123] M Bosch, MR Shcherbakov, K Won et al. Electrically actuated varifocal lens based on liquid-crystal-embedded dielectric metasurfaces. Nano Lett, 21, 3849-3856(2021).

    [124] SM Kamali, A Arbabi, E Arbabi et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat Commun, 7, 11618(2016).

    [125] SM Kamali, E Arbabi, A Arbabi et al. Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev, 10, 1002-1008(2016).

    [126] J Li, HJ Fan, H Ye et al. Design of multifunctional tunable metasurface assisted by elastic substrate. Nanomaterials, 12, 2387(2022).

    [127] WL Li, P He, DY Lei et al. Super-resolution multicolor fluorescence microscopy enabled by an apochromatic super-oscillatory lens with extended depth-of-focus. Nat Commun, 14, 5107(2023).

    [128] YX Ren, HS He, HJ Tang et al. Non-diffracting light wave: fundamentals and biomedical applications. Front Phys, 9, 698343(2021).

    [129] Z Bouchal. Nondiffracting optical beams: physical properties, experiments, and applications. Czech J Phys, 53, 537-578(2003).

    [130] DC Li, XR Wang, JZ Ling et al. Planar efficient metasurface for generation of Bessel beam and super-resolution focusing. Opt Quant Electron, 53, 143(2021).

    [131] ZM Lin, XW Li, RZ Zhao et al. High-efficiency Bessel beam array generation by Huygens metasurfaces. Nanophotonics, 8, 1079-1085(2019).

    [132] FH Shi, M Qiu, L Zhang et al. Multiplane illumination enabled by Fourier-transform metasurfaces for high-speed light-sheet microscopy. ACS Photonics, 5, 1676-1684(2018).

    [133] CS Li, YH Guo, XZ Chang et al. A metasurface-on-fiber light-sheet generator for biological imaging. Opt Commun, 559, 130378(2024).

    [134] Y Luo, ML Tseng, S Vyas et al. Metasurface‐based abrupt autofocusing beam for biomedical applications. Small Methods, 6, 2101228(2022).

    [135] RW Lu, YJ Liang, GH Meng et al. Rapid mesoscale volumetric imaging of neural activity with synaptic resolution. Nat Methods, 17, 291-294(2020).

    [136] XW Wang, ZQ Nie, Y Liang et al. Recent advances on optical vortex generation. Nanophotonics, 7, 1533-1556(2018).

    [137] S Wang, L Li, S Wen et al. Metalens for accelerated optoelectronic edge detection under ambient illumination. Nano Lett, 24, 356-361(2023).

    [138] NI Zheludev. What diffraction limit. Nat Mater, 7, 420-422(2008).

    [139] P Hänninen. Beyond the diffraction limit. Nature, 419, 802(2002).

    [140] SC Park, MK Park, MG Kang. Super-resolution image reconstruction: a technical overview. IEEE Signal Process Mag, 20, 21-36(2003).

    [141] B Huang, H Babcock, XW Zhuang. Breaking the diffraction barrier: super-resolution imaging of cells. Cell, 143, 1047-1058(2010).

    [142] KY Bliokh, AY Bekshaev, F Nori. Extraordinary momentum and spin in evanescent waves. Nat Commun, 5, 3300(2014).

    [143] D Loerke, B Preitz, W Stuhmer et al. Super-resolution measurements with evanescent-wave fluorescence-excitation using variable beam incidence. J Biomed Opt, 5, 23-30(2000).

    [144] JB Pendry. Negative refraction makes a perfect lens. Phys Rev Lett, 85, 3966-3969(2000).

    [145] N Fang, H Lee, C Sun et al. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

    [146] D Lu, ZW Liu. Hyperlenses and metalenses for far-field super-resolution imaging. Nat Commun, 3, 1205(2012).

    [147] M Kim, S So, K Yao et al. Deep sub-wavelength nanofocusing of UV-visible light by hyperbolic metamaterials. Sci Rep, 6, 38645(2016).

    [148] Z Jacob, LV Alekseyev, E Narimanov. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Express, 14, 8247-8256(2006).

    [149] ZW Liu, H Lee, Y Xiong et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686(2007).

    [150] L Kastrup, H Blom, C Eggeling et al. Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys Rev Lett, 94, 178104(2005).

    [151] A Honigmann, V Mueller, H Ta et al. Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat Commun, 5, 5412(2014).

    [152] A Barulin, I Kim. Hyperlens for capturing sub-diffraction nanoscale single molecule dynamics. Opt Express, 31, 12162-12174(2023).

    [153] FF Wei, JL Ponsetto, ZW Liu. Plasmonic structured illumination microscopy. Plasmonics and Super-Resolution Imaging, 127-163(2017).

    [154] FF Wei, D Lu, H Shen et al. Wide field super-resolution surface imaging through plasmonic structured illumination microscopy. Nano Lett, 14, 4634-4639(2014).

    [155] SB Wei, T Lei, LP Du et al. Sub-100nm resolution PSIM by utilizing modified optical vortices with fractional topological charges for precise phase shifting. Opt Express, 23, 30143-30148(2015).

    [156] JL Ponsetto, FF Wei, ZW Liu. Localized plasmon assisted structured illumination microscopy for wide-field high-speed dispersion-independent super resolution imaging. Nanoscale, 6, 5807-5812(2014).

    [157] JL Ponsetto, A Bezryadina, FF Wei et al. Experimental demonstration of localized plasmonic structured illumination microscopy. ACS Nano, 11, 5344-5350(2017).

    [158] YU Lee, SL Li, GBM Wisna et al. Hyperbolic material enhanced scattering nanoscopy for label-free super-resolution imaging. Nat Commun, 13, 6631(2022).

    [159] ETF Rogers, J Lindberg, T Roy et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nat Mater, 11, 432-435(2012).

    [160] MV Berry, S Popescu. Evolution of quantum superoscillations and optical superresolution without evanescent waves. J Phys A: Math Gen, 39, 6965-6977(2006).

    [161] Y Aharonov, DZ Albert, L Vaidman. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys Rev Lett, 60, 1351-1354(1988).

    [162] FM Huang, N Zheludev, YF Chen et al. Focusing of light by a nanohole array. Appl Phys Lett, 90, 091119(2007).

    [163] NI Zheludev, G Yuan. Optical superoscillation technologies beyond the diffraction limit. Nat Rev Phys, 4, 16-32(2022).

    [164] G Chen, ZQ Wen, CW Qiu. Superoscillation: from physics to optical applications. Light Sci Appl, 8, 56(2019).

    [165] F Qin, K Huang, JF Wu et al. A supercritical lens optical label‐free microscopy: sub‐diffraction resolution and ultra‐long working distance. Adv Mater, 29, 1602721(2017).

    [166] Z Li, T Zhang, YQ Wang et al. Achromatic Broadband super‐resolution imaging by super‐oscillatory metasurface. Laser Photonics Rev, 12, 1800064(2018).

    [167] GH Yuan, ETF Rogers, NI Zheludev. Achromatic super-oscillatory lenses with sub-wavelength focusing. Light Sci Appl, 6, e17036(2017).

    [168] ETF Rogers, S Savo, J Lindberg et al. Super-oscillatory optical needle. Appl Phys Lett, 102, 031108(2013).

    [169] T Roy, ETF Rogers, GH Yuan et al. Point spread function of the optical needle super-oscillatory lens. Appl Phys Lett, 104, 231109(2014).

    [170] GH Yuan, ETF Rogers, T Roy et al. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths. Sci Rep, 4, 6333(2014).

    [171] JS Diao, WZ Yuan, YT Yu et al. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles. Opt Express, 24, 1924-1933(2016).

    [172] G Chen, ZX Wu, AP Yu et al. Planar binary-phase lens for super-oscillatory optical hollow needles. Sci Rep, 7, 4697(2017).

    [173] DR Solli, B Jalali. Analog optical computing. Nat Photonics, 9, 704-706(2015).

    [174] SS He, RS Wang, HL Luo. Computing metasurfaces for all-optical image processing: a brief review. Nanophotonics, 11, 1083-1108(2022).

    [175] J Selinummi, P Ruusuvuori, I Podolsky et al. Bright field microscopy as an alternative to whole cell fluorescence in automated analysis of macrophage images. PLoS One, 4, e7497(2009).

    [176] D Marr, E Hildreth. Theory of edge detection. Proc Roy Soc B Biol Sci, 207, 187-217(1980).

    [177] J Canny. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell, PAMI-8, 679-698(1986).

    [178] R Maini, H Aggarwal. Study and comparison of various image edge detection techniques. Int J Image Process, 3, 1-12(2009).

    [179] JK Wang, WH Zhang, QQ Qi et al. Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters. Sci Rep, 5, 15826(2015).

    [180] SB Wei, SW Zhu, XC Yuan. Image edge enhancement in optical microscopy with a Bessel-like amplitude modulated spiral phase filter. J Opt, 13, 105704(2011).

    [181] S Yuan, D Xiang, XM Liu et al. Edge detection based on computational ghost imaging with structured illuminations. Opt Commun, 410, 350-355(2018).

    [182] Y Zhou, HY Zheng, II Kravchenko et al. Flat optics for image differentiation. Nat Photonics, 14, 316-323(2020).

    [183] MK Chen, YF Wu, L Feng et al. Principles, functions, and applications of optical meta‐lens. Adv Opt Mater, 9, 2001414(2021).

    [184] S Abdollahramezani, O Hemmatyar, A Adibi. Meta-optics for spatial optical analog computing. Nanophotonics, 9, 4075-4095(2020).

    [185] L Wan, DP Pan, SF Yang et al. Optical analog computing of spatial differentiation and edge detection with dielectric metasurfaces. Opt Lett, 45, 2070-2073(2020).

    [186] JX Zhou, HL Qian, JX Zhao et al. Two-dimensional optical spatial differentiation and high-contrast imaging. Natl Sci Rev, 8, nwaa176(2021).

    [187] C Guo, M Xiao, M Minkov et al. Photonic crystal slab Laplace operator for image differentiation. Optica, 5, 251-256(2018).

    [188] Y Kim, GY Lee, J Sung et al. Spiral metalens for phase contrast imaging. Adv Funct Mater, 32, 2106050(2022).

    [189] HG Dong, FQ Wang, RS Liang et al. Visible-wavelength metalenses for diffraction-limited focusing of double polarization and vortex beams. Opt Mater Express, 7, 4029-4037(2017).

    [190] C Zhou, YJ Chen, Y Li et al. Laplace differentiator based on metasurface with toroidal dipole resonance. Adv Funct Mater, 34, 2313777(2024).

    [191] CH Chu, YH Chia, HC Hsu et al. Intelligent phase contrast meta-microscope system. Nano Lett, 23, 11630-11637(2023).

    [192] A Overvig, A Alù. Diffractive nonlocal metasurfaces. Laser Photonics Rev, 16, 2100633(2022).

    [193] K Shastri, F Monticone. Nonlocal flat optics. Nat Photonics, 17, 36-47(2023).

    [194] M Kim, D Lee, J Kim et al. Nonlocal metasurfaces‐enabled analog light localization for imaging and lithography. Laser Photonics Rev, 18, 2300718(2024).

    [195] Shiyu Li,, Wei Hsu Chia. Thickness bound for nonlocal wide-field-of-view metalenses. Light: Science & Applications, 11.1, 338(2022).

    [196] H Kwon, D Sounas, A Cordaro et al. Nonlocal metasurfaces for optical signal processing. Phys Rev Lett, 121, 173004(2018).

    [197] H Kwon, A Cordaro, D Sounas et al. Dual-polarization analog 2D image processing with nonlocal metasurfaces. ACS Photonics, 7, 1799-1805(2020).

    [198] MR Arnison, KG Larkin, CJR Sheppard et al. Linear phase imaging using differential interference contrast microscopy. J Microsc, 214, 7-12(2004).

    [199] F Zernike. How I discovered phase contrast. Science, 121, 345-349(1955).

    [200] C Preza, DL Snyder, JA Conchello. Theoretical development and experimental evaluation of imaging models for differential-interference-contrast microscopy. J Opt Soc Am A, 16, 2185-2199(1999).

    [201] C Preza. Rotational-diversity phase estimation from differential-interference-contrast microscopy images. J Opt Soc Am A, 17, 415-424(2000).

    [202] M Shribak. Quantitative orientation-independent differential interference contrast microscope with fast switching shear direction and bias modulation. J Opt Soc Am A, 30, 769-782(2013).

    [203] Q Zhao, L Kang, B Du et al. Electrically tunable negative permeability metamaterials based on nematic liquid crystals. Appl Phys Lett, 90, 011112(2007).

    [204] B Kang, JH Woo, E Choi et al. Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure. Opt Express, 18, 16492-16498(2010).

    [205] FL Zhang, WH Zhang, Q Zhao et al. Electrically controllable fishnet metamaterial based on nematic liquid crystal. Opt Express, 19, 1563-1568(2011).

    [206] H Su, H Wang, H Zhao et al. Liquid-crystal-based electrically tuned electromagnetically induced transparency metasurface switch. Sci Rep, 7, 17378(2017).

    [207] P Yu, JX Li, N Liu. Electrically tunable optical metasurfaces for dynamic polarization conversion. Nano Lett, 21, 6690-6695(2021).

    [208] T Badloe, I Kim, Y Kim et al. Electrically tunable bifocal metalens with diffraction‐limited focusing and imaging at visible wavelengths. Adv Sci, 8, 2102646(2021).

    [209] SL Zhou, YF Wu, SR Chen et al. Phase change induced active metasurface devices for dynamic wavefront control. J Phys D Appl Phys, 53, 204001(2020).

    [210] HS Ee, R Agarwal. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett, 16, 2818-2823(2016).

    [211] ML Tseng, HH Hsiao, CH Chu et al. Metalenses: advances and applications. Adv Opt Mater, 6, 1800554(2018).

    [212] CA Dirdal, PCV Thrane, FT Dullo et al. MEMS-tunable dielectric metasurface lens using thin-film PZT for large displacements at low voltages. Opt Lett, 47, 1049-1052(2022).

    [213] ZY Han, S Colburn, A Majumdar et al. MEMS-actuated metasurface Alvarez lens. Microsystems, 6, 79(2020).

    [214] E Arbabi, A Arbabi, SM Kamali et al. MEMS-tunable dielectric metasurface lens. Nat Commun, 9, 812(2018).

    [215] Y Luo, CH Chu, S Vyas et al. Varifocal metalens for optical sectioning fluorescence microscopy. Nano Lett, 21, 5133-5142(2021).

    [216] Y Kim, PC Wu, R Sokhoyan et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett, 19, 3961-3968(2019).

    [217] W Bai, P Yang, J Huang et al. Near-infrared tunable metalens based on phase change material Ge2Sb2Te5. Sci Rep, 9, 5368(2019).

    [218] A Afridi, J Gieseler, N Meyer et al. Ultrathin tunable optomechanical metalens. Nano Lett, 23, 2496-2501(2023).

    [219] YK Song, WC Liu, XL Wang et al. Multifunctional metasurface lens with tunable focus based on phase transition material. Front Phys, 9, 651898(2021).

    [220] B Crosson, A Ford, KM McGregor et al. Functional imaging and related techniques: an introduction for rehabilitation researchers. J Rehabil Res Dev, 47, vii-xxxiv(2010).

    [221] J Tsao. Ultrafast imaging: principles, pitfalls, solutions, and applications. J Magn Reson Imaging, 32, 252-266(2010).

    [222] E Sezgin, F Schneider, S Galiani et al. Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS. Nat Protoc, 14, 1054-1083(2019).

    [223] L Schermelleh, A Ferrand, T Huser et al. Super-resolution microscopy demystified. Nat Cell Biol, 21, 72-84(2019).

    [224] AV Kuhlmann, J Houel, D Brunner et al. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode. Rev Sci Instrum, 84, 073905(2013).

    [225] P Beard. Biomedical photoacoustic imaging. Interface Focus, 1, 602-631(2011).

    [226] V Balasubramani, A Kuś, HY Tu et al. Holographic tomography: techniques and biomedical applications [Invited]. Appl Opt, 60, B65-B80(2021).

    [227] H Wang, T Akkin, C Magnain et al. Polarization sensitive optical coherence microscopy for brain imaging. Opt Lett, 41, 2213-2216(2016).

    [228] B Baumann. Polarization sensitive optical coherence tomography: a review of technology and applications. Appl Sci, 7, 474(2017).

    [229] JM Girkin, MT Carvalho. The light-sheet microscopy revolution. J Opt, 20, 053002(2018).

    [230] BC Chen, WR Legant, K Wang et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 346, 1257998(2014).

    [231] EHK Stelzer, F Strobl, BJ Chang et al. Light sheet fluorescence microscopy. Nat Rev Methods Primers, 1, 73(2021).

    [232] A Archetti, M Bruzzone, G Tagliabue et al. Generation of Bessel beam lattices by a single metasurface for neuronal activity recording in zebrafish larva. bioRxiv(2023). https://www.biorxiv.org/content/10.1101/2023.02.12.528189v1

    [233] E Arbabi, JQ Li, RJ Hutchins et al. Two-photon microscopy with a double-wavelength metasurface objective lens. Nano Lett, 18, 4943-4948(2018).

    [234] ML Rynes, DA Surinach, S Linn et al. Miniaturized head-mounted microscope for whole-cortex mesoscale imaging in freely behaving mice. Nat Methods, 18, 417-425(2021).

    [235] J Yao, R Lin, MK Chen et al. Integrated-resonant metadevices: a review. Adv Photonics, 5, 024001(2023).

    [236] S Colburn, AL Zhan, A Majumdar. Metasurface optics for full-color computational imaging. Sci Adv, 4, eaar2114(2018).

    [237] O Avayu, E Almeida, Y Prior et al. Composite functional metasurfaces for multispectral achromatic optics. Nat Commun, 8, 14992(2017).

    [238] X Hua, YJ Wang, SM Wang et al. Ultra-compact snapshot spectral light-field imaging. Nat Commun, 13, 2732(2022).

    [239] E Tseng, S Colburn, J Whitehead et al. Neural nano-optics for high-quality thin lens imaging. Nat Commun, 12, 6493(2021).

    [240] P Chakravarthula, JP Sun, X Li et al. Thin on-sensor nanophotonic array cameras. ACM Trans Graph, 42, 249(2023).

    [241] B Park, D Oh, J Kim et al. Functional photoacoustic imaging: from nano- and micro- to macro-scale. Nano Converg, 10, 29(2023).

    [242] B Park, KM Lee, S Park et al. Deep tissue photoacoustic imaging of nickel(II) dithiolene-containing polymeric nanoparticles in the second near-infrared window. Theranostics, 10, 2509-2521(2020).

    [243] DP Wang, YH Wang, WR Wang et al. Deep tissue photoacoustic computed tomography with a fast and compact laser system. Biomed Opt Express, 8, 112-123(2017).

    [244] YT Zhao, CK Guo, YQ Zhang et al. Ultraviolet metalens for photoacoustic microscopy with an elongated depth of focus. Opt Lett, 48, 3435-3438(2023).

    [245] DW Li, L Humayun, E Vienneau et al. Seeing through the skin: photoacoustic tomography of skin vasculature and beyond. JID innov, 1, 100039(2021).

    [246] JJ Yao, LV Wang. Sensitivity of photoacoustic microscopy. Photoacoustics, 2, 87-101(2014).

    [247] WW Liu, PC Li. Photoacoustic imaging of cells in a three-dimensional microenvironment. J Biomed Sci, 27, 3(2020).

    [248] YZ Liang, WB Fu, Q Li et al. Optical-resolution functional gastrointestinal photoacoustic endoscopy based on optical heterodyne detection of ultrasound. Nat Commun, 13, 7604(2022).

    [249] GJ Tearney, SA Boppart, BE Bouma et al. Scanning single-mode fiber optic catheter–endoscope for optical coherence tomography: erratum. Opt Lett, 21, 912(1996).

    [250] GJ Tearney, ME Brezinski, BE Bouma et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science, 276, 2037-2039(1997).

    [251] LP Hariri, DC Adams, JC Wain et al. Endobronchial optical coherence tomography for low-risk microscopic assessment and diagnosis of idiopathic pulmonary fibrosis in vivo. Am J Respir Crit Care Med, 197, 949-952(2018).

    [252] JY Yang, I Ghimire, PC Wu et al. Photonic crystal fiber metalens. Nanophotonics, 8, 443-449(2019).

    [253] W Drexler. Ultrahigh-resolution optical coherence tomography. J Biomed Opt, 9, 47-74(2004).

    [254] S Aumann, S Donner, J Fischer et al. Optical coherence tomography (OCT): principle and technical realization.. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics, 59-85(2019).

    [255] QC Zhao, WH Yuan, JQ Qu et al. Optical fiber-integrated metasurfaces: an emerging platform for multiple optical applications. Nanomaterials (Basel), 12(2022).

    [256] M Pahlevaninezhad, YW Huang, M Pahlevani et al. Metasurface-based bijective illumination collection imaging provides high-resolution tomography in three dimensions. Nat Photonics, 16, 203-211(2022).

    [257] JE Fröch, LC Huang, QAA Tanguy et al. Real time full-color imaging in a meta-optical fiber endoscope. eLight, 3, 13(2023).

    [258] LP Hariri, M Villiger, MB Applegate et al. Seeing beyond the bronchoscope to increase the diagnostic yield of bronchoscopic biopsy. Am J Respir Crit Care Med, 187, 125-129(2013).

    [259] DC Adams, LP Hariri, AJ Miller et al. Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo. Sci Transl Med, 8, 359ra131(2016).

    [260] SK Nadkarni, MC Pierce, BH Park et al. Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. J Am Coll Cardiol, 49, 1474-1481(2007).

    [261] YH Chia, WH Liao, S Vyas et al. In vivo intelligent fluorescence endo‐microscopy by varifocal meta‐device and deep learning. Adv Sci, 11, 2307837(2024).

    [262] CH Chu, S Vyas, Y Luo et al. Recent developments in biomedical applications of metasurface optics. APL Photonics, 9, 030901(2024).

    [263] J Gupta, P Das, R Bhattacharjee et al. Enhancing signal-to-noise ratio of clinical 1.5T MRI using metasurface-inspired flexible wraps. Appl Phys A, 129, 725(2023).

    [264] MA Brown, RC Semelka. MRI: Basic Principles and Applications(2011).

    [265] DB Plewes, W Kucharczyk. Physics of MRI: a primer. J Magn Reson Imaging, 35, 1038-1054(2012).

    [266] Reeth E Van, IWK Tham, CH Tan et al. Super‐resolution in magnetic resonance imaging: a review. Concepts Magn Reson Part A, 40, 306-325(2012).

    [267] EH Voormolen, SJH Diederen, P Woerdeman et al. Implications of extracranial distortion in ultra-high-field magnetic resonance imaging for image-guided cranial neurosurgery. World Neurosurg, 126, e250-e258(2019).

    [268] ZP Li, X Tian, CW Qiu et al. Metasurfaces for bioelectronics and healthcare. Nat Electron, 4, 382-391(2021).

    [269] AP Slobozhanyuk, AN Poddubny, AJE Raaijmakers et al. Enhancement of magnetic resonance imaging with metasurfaces. Adv Mater, 28, 1832-1838(2016).

    [270] E Stoja, S Konstandin, D Philipp et al. Improving magnetic resonance imaging with smart and thin metasurfaces. Sci Rep, 11, 16179(2021).

    [271] EI Kretov, AV Shchelokova, AP Slobozhanyuk. Impact of wire metasurface eigenmode on the sensitivity enhancement of MRI system. Appl Phys Lett, 112, 033501(2018).

    [272] XG Zhao, GW Duan, K Wu et al. Intelligent metamaterials based on nonlinearity for magnetic resonance imaging. Adv Mater, 31, 1905461(2019).

    [273] CA Corneanu, MO Simón, JF Cohn et al. Survey on RGB, 3D, thermal, and multimodal approaches for facial expression recognition: History, trends, and affect-related applications. IEEE Trans Pattern Anal, 38, 1548-1568(2016).

    [274] S Colburn, A Majumdar. Single-shot three-dimensional imaging with a metasurface depth camera(2019). https://arxiv.org/abs/1910.12111

    [275] F Tsalakanidou, S Malassiotis. Real-time 2D+ 3D facial action and expression recognition. Pattern Recognit, 43, 1763-1775(2010).

    [276] LF Sun, ZR Wang, JB Jiang et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci Adv, 7, eabg1455(2021).

    [277] JM Kwon, SP Yang, KH Jeong. Stereoscopic facial imaging for pain assessment using rotational offset microlens arrays based structured illumination. Micro Nano Syst Lett, 9, 11(2021).

    [278] H Imaoka, H Hashimoto, K Takahashi et al. The future of biometrics technology: from face recognition to related applications. APSIPA Trans Signal Inf Process, 10, e9(2021).

    [279] Jr JD Woodward, C Horn, J Gatune et al. Biometrics: A Look at Facial Recognition(2003).

    [280] MY Du. Mobile payment recognition technology based on face detection algorithm. Concurr Comput Pract Exper, 30, e4655(2018).

    [281] ZL Li, Q Dai, MQ Mehmood et al. Full-space cloud of random points with a scrambling metasurface. Light Sci Appl, 7, 63(2018).

    [282] YY Xie, PN Ni, QH Wang et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat Nanotechnol, 15, 125-130(2020).

    [283] T Hu, QZ Zhong, NX Li et al. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics, 9, 823-830(2020).

    [284] N Grew. NOTES of the WEEK.

    [285] J Galbally, R Haraksim, L Beslay. A study of age and ageing in fingerprint biometrics. IEEE Trans Inf Foren Sec, 14, 1351-1365(2019).

    [286] N Yager, A Amin. Fingerprint classification: a review. Pattern Anal Appl, 7, 77-93(2004).

    [287] AK Jain, K Cao, SS Arora. Recognizing infants and toddlers using fingerprints: Increasing the vaccination coverage, 1-8(2014). http://doi.org/10.1109/BTAS.2014.6996252

    [288] HC Lee, RE Gaensslen. Advances in Fingerprint Technology(2001).

    [289] WC Yang, S Wang, JK Hu et al. Security and accuracy of fingerprint-based biometrics: a review. Symmetry, 11, 141(2019).

    [290] A Uhl, P Wild. Comparing verification performance of kids and adults for fingerprint, palmprint, hand-geometry and digitprint biometrics, 1-6(2009). http://doi.org/10.1109/BTAS.2009.5339069

    [291] DK Oh, T Lee, B Ko et al. Nanoimprint lithography for high-throughput fabrication of metasurfaces. Front Optoelectron, 14, 229-251(2021).

    Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim. Advanced biological imaging techniques based on metasurfaces[J]. Opto-Electronic Advances, 2024, 7(12): 240122
    Download Citation